Advertisement

Equadiff 6 pp 285-289 | Cite as

Recent results in the approximation of free boundaries

  • F. Brezzi
Lectures Presented In Sections Section C Numerical Methods
Part of the Lecture Notes in Mathematics book series (LNM, volume 1192)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Baiocchi-A. Capelo: "Variational and quasivariational inequalities. Applications to free boundary problems", J. Wiley, 1984.Google Scholar
  2. 2.
    C. Baiocchi-G. Pozzi: "Error estimates and free-boundary convergence for a finite difference discretization of a parabolic variational inequality", RAIRO Numer. Anal. 11, 4 (1977), 315–340.MathSciNetzbMATHGoogle Scholar
  3. 3.
    F. Brezzi: "Error estimates in the approximation of a free boundary", Math. Probl. in Structural Analysis, (G. Del Piero-F. Mauceri Eds.), Springer, CIS, Courses and Lect. n. 288 (1985), 17–23.Google Scholar
  4. 4.
    F. Brezzi-L. Caffarelli: "Convergence of the discrete free boundaries for finite element approximations", RAIRO Numer. Anal., 17 (1983), 385–395.MathSciNetGoogle Scholar
  5. 5.
    L. Caffarelli: "A remark on the Haussdorff measure of a free boundary, and the convergence of coincidence sets", Boll. U.M.I. (5), 18 A (1981), 109–113.MathSciNetzbMATHGoogle Scholar
  6. 6.
    P. Ciarlet: "The Finite Element Method for Elliptic Problems", North-Holland (1978).Google Scholar
  7. 7.
    A. Friedman: "Variational Principles and Free Boundary Problems", Wiley, New York, (1982).zbMATHGoogle Scholar
  8. 8.
    E. Magenes, Editor (1980), "Free Boundary Problems", 2 vol., Proc. Sem. (Pavia, 1979), Istituto Nazionale di Alta Matematica, Roma.Google Scholar
  9. 9.
    R.H. Nochetto: "A note on the approximation of free boundaries by finite element methods", To appear in R.A.I.R.O. Anal.Numer.Google Scholar
  10. 10.
    P. Pietra-C. Verdi: "Convergence of the approximated free-boundary for the multidimensional one-phase Stefan problem", (to appear in Computational Mechanics).Google Scholar
  11. 11.
    P. Pietra-C. Verdi: "Convergence of the approximate free boundary for the multidimensional one-phase Stefan problem", (to appear).Google Scholar

Copyright information

© Equadiff 6 and Springer-Verlag 1986

Authors and Affiliations

  • F. Brezzi
    • 1
  1. 1.Instituto di Analisi Numerica del C. N. R.Universita di PaviaPaviaItaly

Personalised recommendations