Advertisement

Equadiff 6 pp 251-258 | Cite as

Classical boundary value problems for Monge-Ampère type equations

  • N. S. Trudinger
Lectures Presented In Sections Section B Partial Differential Equations
Part of the Lecture Notes in Mathematics book series (LNM, volume 1192)

Keywords

Elliptic Equation Dirichlet Problem Nonlinear Elliptic Equation Order Elliptic Equation Convex Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A.D. Aleksandrov, Dirichlet's problem for the equation Det‖zij‖=φ(zi,…,znz,x1,…,xn), Vestnik Leningrad Univ. 13 (1958), 5–24, [Russian].Google Scholar
  2. [2]
    I. Ya. Bakel'man, The Dirichlet problem for equations of Monge-Ampère type and their n-dimensional analogues, Dokl. Akad. Nauk, SSSR 126 (1959), 923–926, [Russian].MathSciNetzbMATHGoogle Scholar
  3. [3]
    I. Ya. Bakel'man, The Dirichlet problem for the elliptic n-dimensional Monge-Ampere equations and related problems in the theory of quasilinear equations, Proceedings of Seminar on Monge-Ampère Equations and Related Topics, Firenze 1980), Instituto Nazionale di Alta Matematica, Roma, (1982), 1–78.Google Scholar
  4. [4]
    E. Calabi, Improper affine hyperspheres of convex type and a generalization of a theorem by K. Jörgens, Michigan Math. J. 5 (1958), 105–126.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    L. Caffarelli, L. Nirenberg, J. Spruck, The Dirichlet problem for nonlinear second order elliptic equations, I. Monge-Ampère equation, Comm. Appl. Math. 37 (1984), 369–402.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    L. Caffarelli, J.J. Kohn, L. Nirenberg, J. Spruck, The Dirichlet problem for nonlinear second order elliptic equations II. Complex Monge-Ampère and uniformly elliptic equations, Comm. Pure Appl. Math. 38 (1985), 209–252.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    S.-Y. Cheng, S.-T. Yau. On the regularity of the solution of the n-dimensional Minkowski problem, Comm. Pure Appl. Math. 29 (1976), 495–516.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    L.C. Evans, Classical solutions of fully nonlinear, convex, second order elliptic equations, Comm. Pure Appl. Math. 35 (1982), 333–363.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    D. Gilbarg, N.S. Trudinger, Elliptic partial differential equations of second order, Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, Second Edition, 1983.CrossRefzbMATHGoogle Scholar
  10. [10]
    N.M. Ivochkina, Construction of a priori bounds for convex solutions of the Monge-Ampère equation by integral methods, Ukrain. Mat. Z. 30 (1978), 45–53, [Russian].MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    N.M. Ivochkina, An apriori estimate of \(\left\| u \right\|_{C^2 (\bar \Omega )}\) for convex solutions of the Dirichlet problem for the Monge-Ampère equations, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 96 (1980), 69–79, [Russian]. English translation in J. Soviet Math. 21 (1983), 689–697.MathSciNetGoogle Scholar
  12. [12]
    N.M. Ivochkina, Classical solvability of the Dirichlet problem for the Monge-Ampère equation, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 131 (1983), 72–79.MathSciNetzbMATHGoogle Scholar
  13. [13]
    N.V. Kyrlov, Boundedly inhomogeneous elliptic and parabolic equations, Izv, Akad. Nauk. SSSR 46 (1982), 487–523, [Russian]. English translation in Math. USSR Izv. 20 (1983), 459–492.MathSciNetGoogle Scholar
  14. [14]
    N.V. Krylov, Boundedly inhomogeneous elliptic and parabolic equations in a domain, Izv. Akad. Nauk. SSSR 47 (1983), 75–108, [Russian].MathSciNetGoogle Scholar
  15. [15]
    N.V. Krylov, On degenerative nonlinear elliptic equations, Mat. Sb. (N.S.) 120 (1983), 311–330, [Russian].MathSciNetzbMATHGoogle Scholar
  16. [16]
    G.M. Lieberman, N.S. Trudinger, Nonlinear oblique boundary value problems for nonlinear elliptic equations. Aust. Nat. Univ. Centre for Math. Anal. Research Report R24 (1984).Google Scholar
  17. [17]
    P.-L. Lions, Sur les équations de Monge-Ampère I, Manuscripta Math. 41 (1983), 1–44.MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    P.-L. Lions, Sur les équations de Monge-Ampère II, Arch. Rational Mech. Anal. (to appear).Google Scholar
  19. [19]
    P.-L. Lions, N.S. Trudinger, Linear oblique derivative problems for the uniformly elliptic Hamilton-Jacobi-Bellman equation, Math. Zeit. (to appear).Google Scholar
  20. [20]
    P.-L. Lions, N.S. Trudinger, J.I.E. Urbas, The Neumann problem for equations of Monge-Ampère type. Aust. Nat. Univ. Centre for Math. Anal. Research Report R16 (1985).Google Scholar
  21. [21]
    A.V. Pogorelov, The Dirichlet problem for the n-dimensional analogue of the Monge-Ampère equation, Dokl. Akad. Nauk. SSSR 201 (1971), 790–793, [Russian]. English translation in Soviet Math. Dokl. 12 (1971), 1727–1731.MathSciNetzbMATHGoogle Scholar
  22. [22]
    A.V. Pogorelov, The Minkowski multidimensional problem, J. Wiley, New York, 1978.zbMATHGoogle Scholar
  23. [23]
    F. Schultz, A remark on fully nonlinear, concave elliptic equations, Proc. Centre for Math. Anal. Aust. Nat. Univ. 8, (1984), 202–207.MathSciNetGoogle Scholar
  24. [24]
    N.S. Trudinger, Boundary value problems for fully nonlinear elliptic equations. Proc. Centre for Math. Anal. Aust. Nat. Univ. 8 (1984), 65–83.MathSciNetGoogle Scholar
  25. [25]
    N.S. Trudinger, Regularity of solutions of fully nonlinear elliptic equations. Boll. Un. Mat. Ital., 3-A (1984), 421–430. II Aust. Nat. Univ. Centre for Math. Anal. Research Report R38 (1984).MathSciNetzbMATHGoogle Scholar
  26. [26]
    N.S. Trudinger, J.I.E. Urbas, The Dirichlet problem for the equation of prescribed Gauss curvature, Bull. Austral. Math. Soc. 28 (1983), 217–231.MathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    N.S. Trudinger, J.I.E. Urbas, On second derivative estimates for equations of Monge-Ampère type, Bull. Austral. Math. Soc. 30 (1984), 321–334.MathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    J.I.E. Urbas, Some recent results on the equation of prescribed Gauss curvature, Proc. Centre for Math. Anal. Aust. Nat. Univ. 8 (1984), 215–220.MathSciNetzbMATHGoogle Scholar
  29. [29]
    J.I.E. Urbas, The equation of prescribed Gauss curvature without boundary conditions, J. Differential Geometry (to appear).Google Scholar
  30. [30]
    J.I.E. Urbas, The generalized Dirichlet problem for equation of Monge-Ampère type. Ann. L'Inst. Henri Poincaré, (to appear).Google Scholar

Copyright information

© Equadiff 6 and Springer-Verlag 1986

Authors and Affiliations

  • N. S. Trudinger
    • 1
  1. 1.Centre for Mathematical AnalysisAustralian National UniversityCanberraAustralia

Personalised recommendations