Equadiff 6 pp 209-214 | Cite as

On uniqueness and stability of steady-state carrier distributions in semiconductors

  • H. Gajewski
Lectures Presented In Sections Section B Partial Differential Equations
Part of the Lecture Notes in Mathematics book series (LNM, volume 1192)


Semiconductor Device Lipschitzian Domain Carrier Transport Smallness Condition Global Asymptotic Stability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    BONČ-BRUEVICH,V.L., ZVJAGIN,I.P., MIRONOV,A.G., Spatial electrical instability in semiconductors (russian), Moscow 1972.Google Scholar
  2. [2]
    GAJEWSKI, H., On existence, uniqueness and asymptotic behavior of the basic equations for carrier transport in semiconductors, ZAMM 65, (1985), 101–108.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    GAJEWSKI,H., On the existence of steady-state carrier distributions in semiconductors, In: Probleme und Methoden der Mathematischen Physik, Teubner-Texte zur Mathematik 63. (Ed. V. Friedrich u. a.).Google Scholar
  4. [4]
    GAJEWSKI,H., GRÖGER,K., On the basic equations for carrier transport in semiconductors, J. Math. Anal. Appl., to appear.Google Scholar
  5. [5]
    GRÖGER,K., On steady-state carrier distributions in semiconductor devices, to appear.Google Scholar
  6. [6]
    GUMMEL,H.K., A selfconsistent iterative scheme for one-dimensional steady state transistor calculations, IEEE Trans. Electron Devices ED-11 (1964), 455–465.Google Scholar
  7. [7]
    MOCK, M.S., On equations describing steady-state carrier distributions in a semiconductor device, Comm. Pure Appl. Math. 25 (1972), 781–792.MathSciNetCrossRefGoogle Scholar
  8. [8]
    MOCK, M.S., An initial value problem from semiconductor device theory, SIAM J. Math. Anal. 5 (1974), 597–612.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    MOCK, M.S., Asymptotic behavior of solutions of transport equations for semiconductor devices, J. Math. Anal. Appl. 49 (1975), 215–225.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    MOCK,M.S., Analysis of mathematical models of semiconductor devices, Dublin 1983.Google Scholar
  11. [11]
    VAN ROOSBROECK, W., Theory of the flow of electrons and holes in Germanium and other semiconductors, Bell Syst. Tech. J 29 (1950), 560–623.CrossRefGoogle Scholar
  12. [12]
    SEIDMAN, T.I., Steady state solutions of diffusion-reaction systems with electrostatic convection, Nonlinear Analysis 4 (1980), 623–637.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    SELBERHERR,S., Analysis and simulation of semiconductor devices, Wien-New York 1984.Google Scholar

Copyright information

© Equadiff 6 and Springer-Verlag 1986

Authors and Affiliations

  • H. Gajewski
    • 1
  1. 1.Karl-Weierstraß-Institut für Mathematik der Akademie der Wissenschaften der DDRBerlinGermany

Personalised recommendations