Equadiff 6 pp 161-170 | Cite as

Surjectivity and boundary value problems

  • V. Šeda
Lectures Presented In Sections Section A Ordinary Differential Equations
Part of the Lecture Notes in Mathematics book series (LNM, volume 1192)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    ANGELOV, V.G., BAJNOV, D.D., On the Existence and Uniqueness of a Bounded Solution to Functional Differential Equations of Neutral Type in a Banach Space (In Russian). Arch. Math. 2, Scripta Fac. Sci. Nat. UJEP Brunensis XVII: 65–72 (1981).MathSciNetzbMATHGoogle Scholar
  2. [2]
    DEIMLING, K., Nichtlineare Gleichungen und Abbildungsgiade, Springer-Verlag, Berlin 1974.CrossRefzbMATHGoogle Scholar
  3. [3]
    HALE, J.K., Theory of Functional Differential Equations, Appl. Math. Sci., Vol. 3, Springer-Verlag, New York (1977).zbMATHGoogle Scholar
  4. [4]
    HALE, J.K., Retarded Equations With Intinite Delays, Lecture Notes in Mathematics, Vol. 730, Springer-Verlag, Berlin, 157–193 (1979).Google Scholar
  5. [5]
    HARTMAN, Ph., Ordinary Differential Equations, John Wiley, New York 1964.zbMATHGoogle Scholar
  6. [6]
    NUSSBAUM, R.D., Degree Theory for Local Condensing Maps, J. Math. Anal. Appl. 37, 741–766 (1972).MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    OPIAL, Z., Linear Problems fon Systems of Nonlinear Differential Equations, J. Differential Equations 3, 580–594 (1967).MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    SMÍTALOVÁ, K., On a Problem Concerning a Functional Differential Equation, Math. Slovaca 30, 239–242 (1980).MathSciNetzbMATHGoogle Scholar
  9. [9]
    ŠEDA,V., Functional Differential Equations With Deviating Argument (Preprint).Google Scholar
  10. [10]
    ŠEDA,V., On Surjectivity of an Operaton (Preprint).Google Scholar
  11. [11]
    ŠVEC, M., Some Properties of Functional Differential Equations, Bolletino U.M.I. (4) 11, Supp. Fasc. 3, 467–477 (1975).MathSciNetGoogle Scholar
  12. [12]
    WEBB, G.F., Accretive Operators and Existence for Nonlinear Functional Differential Equations, J. Differential Equations 14, 57–69 (1973).MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Equadiff 6 and Springer-Verlag 1986

Authors and Affiliations

  • V. Šeda
    • 1
  1. 1.Faculty of Mathematics and PhysicsComenius UniversityBratislavaCzech Republic

Personalised recommendations