Advertisement

Equadiff 6 pp 141-148 | Cite as

Uniform zeros for beaded strings

  • K. Kreith
Lectures Presented In Sections Section A Ordinary Differential Equations
Part of the Lecture Notes in Mathematics book series (LNM, volume 1192)

Keywords

Contact Point Coordinate Plane Conjugate Point Exit Point Jacobi Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Ahmad and A. Lazer, On the components of extremal solutions of second order systems, SIAM J. Math. Anal. 8(1977), 16–23.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    P. Alexandroff and H. Hopf, Topologie, Berlin, Springer Verlag, 1935.zbMATHGoogle Scholar
  3. 3.
    J. Cannon and S. Dostrovsky, The Evolution of Dynamics, Vibration Theory from 1687 to 1742, New York, Springer Verlag, 1981.CrossRefzbMATHGoogle Scholar
  4. 4.
    R. J. Duffin, Vibration of a beaded string analyzed topologically, Arch. Rat. Mech. and Anal. 56(1974), 287–293.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    F. Gantmacher and M. Krein, Oscillation Matrices and Kernels and Small Vibrations of Mechanical Systems, Moscow, State Publishing House, 1950.zbMATHGoogle Scholar
  6. 6.
    M. A. Krasnoselskii, Positive Solutions of Operator Equations, Groningen, Noordhoff, 1964.Google Scholar
  7. 7.
    K. Kreith, Picone-type theorems for semi-discrete hyperbolic equations, Proc. Amer. Math. Soc. 88(1983), 436–438.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    K. Kreith, Stability criteria for conjugate points of indefinite second order differential systems, J. Math. Anal. and Applic., to appear.Google Scholar
  9. 9.
    M. Morse, A Generalization of the Sturm separation and comparison theorems in n-space, Math. Annalen 103(1930), 72–91.MathSciNetCrossRefGoogle Scholar
  10. 10.
    W. T. Reid, Strumian Theory for Ordinary Differential Equations. New York, Springer Verlag, 1980.CrossRefGoogle Scholar

Copyright information

© Equadiff 6 and Springer-Verlag 1986

Authors and Affiliations

  • K. Kreith
    • 1
  1. 1.University of CaliforniaDavisUSA

Personalised recommendations