Equadiff 6 pp 95-106 | Cite as

Recent developments in the theory of function spaces

  • H. Triebel
Plenary Lectures
Part of the Lecture Notes in Mathematics book series (LNM, volume 1192)


Function Space Hardy Space Complete Riemannian Manifold Fourier Multiplier Interpolation Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Aronsazaj, N., Smith, K.T., Theory of Bessel potentials, I. Ann. Inst. Fourier (Grenoble) 11 (1961), 385–476.MathSciNetCrossRefGoogle Scholar
  2. [2]
    Besov, O.V., On a family of function spaces. Embeddings and extensions, (Russian) Dokl. Akad. Nauk SSSR 126 (1959), 1163–1165.MathSciNetzbMATHGoogle Scholar
  3. [3]
    Besov, O.V., On a family of function spaces in connections with embeddings and extensions, (Russian) Trudy Mat. Inst. Steklov 60 (1961), 42–81.MathSciNetGoogle Scholar
  4. [4]
    Butzer, P.P., Berens, H., Semi-Groups of Operatons and Approximation, Springer; Berlin, Heidelberg, New York, 1967.CrossRefzbMATHGoogle Scholar
  5. [5]
    Calderòn, A.P., Lebesque spaces of functions and distributions, "Part. Diff. Eq.", Proc. Symp. Math. 4, AMS (1961), 33–49.CrossRefGoogle Scholar
  6. [6]
    Calderón, A.P., Intermediate spaces and interpolation, the complex method, Studia Math. 24 (1964), 113–190.MathSciNetzbMATHGoogle Scholar
  7. [7]
    Fefferman, C., Stein, E.M., H p spaces of several variables, Acta Math. 129 (1972), 137–193.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    Flett, T.M., Temperatures, Bessel potentials and Lipschitz spaces, Proc. London Math. Soc. 32 (1971), 385–451.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    Lions, J.-L., Peetre, J., Sur une class d' espaces d' interpolation, Inst. Hautes Etudes Sci. Publ. Math. 19 (1964), 5–68.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    Lizorkin, P.I., Properties of functions of the spaces ⋀ pn,θ, (Russian) Trudy Mat. Inst. Steklov 131 (1974), 158–181.MathSciNetGoogle Scholar
  11. [11]
    Peetre, J., Sur les espaces de Besov, C.R. Acad. Sci. Paris, Sér. A–B 264 (1967), 281–283.MathSciNetzbMATHGoogle Scholar
  12. [12]
    Peetre, J., Remarques sur les espaces de Besov, Le cas 0<p<1, C.R. Acad. Sci. Paris, Sér, A–B 277 (1973), 947–950.MathSciNetzbMATHGoogle Scholar
  13. [13]
    Peetre, J., On spaces of Triebel-Lizonkin type, Ark. Mat. 13 (1975), 123–130.MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    Peetre,J., New Thoughts on Besov Spaces, Duke Univ. Math. Series, Durham, 1976.Google Scholar
  15. [15]
    Runst,T., Para-differential operators in spaces of Triebel-Lizonrkin and Besov type, Z. Analysis Anwendungen.Google Scholar
  16. [16]
    Sobolev, S.L., Méthode nouvelle à resoudre le probléme de Cauchy pour les équations linéaires hyperboliques normales, Mat. Sb. 1 (1936), 39–72.zbMATHGoogle Scholar
  17. [17]
    Stein, E.M., Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, 1970.zbMATHGoogle Scholar
  18. [18]
    Taibleson, M.H., On the theory of Lipschitz spaces of distributions on euclidean n-space, I,II, J. Math. Mechanics 13 (1964), 407–479; (1965), 821–839.MathSciNetzbMATHGoogle Scholar
  19. [19]
    Triebel, H., Spaces of distributions of Besov type on euclidean n-space, Duality, Interpolation, Ark. Mat. 11 (1973), 13–64.MathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    Triebel, H., Interpolation Theory, Function Spaces, Differential Operatons, North-Holland, Amsterdam, New York, Oxford, 1978.Google Scholar
  21. [21]
    Triebel, H., Fourier Analysis and Function Spaces, Teubner, Leipzig, 1977.zbMATHGoogle Scholar
  22. [22]
    Triebel, H., Spaces of Besov-Hardy-Sobolev Type, Teubner, Leipzig, 1978.zbMATHGoogle Scholar
  23. [23]
    Triebel, H., Theory of Function Spaces, Birkhäuser, Boston 1983, and Geest & Porting, Leipzig, 1983.CrossRefzbMATHGoogle Scholar
  24. [24]
    Triebel, H., Characterizations of Besov-Hardy-Sobolev spaces via harmonic functions, temperatures, and related means, J. Approximation Theory 35 (1982), 275–297.MathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    Triebel,H., Characterizations of Besov-Hardy-Sobolev spaces, a unified approach.Google Scholar
  26. [26]
    Triebel,H., Diffeomorphism properties and pointwise multipliers for spaces of Besov-Hardy-Sobolev type.Google Scholar
  27. [27]
    Triebel,H., Spaces of Besov-Hardy-Sobolev type on complete Riemannian manifolds.Google Scholar
  28. [28]
    Triebel,H., Pseudo-differential operators in F p,qs-spaces.Google Scholar
  29. [29]
    Zygmund, A., Smooth functions, Duke Math. J. 12 (1945), 47–76.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Equadiff 6 and Springer-Verlag 1986

Authors and Affiliations

  • H. Triebel
    • 1
  1. 1.Universitäts HochhausSektion Mathematik, Universität JenaJena

Personalised recommendations