Equadiff 6 pp 85-94 | Cite as

Algorithms for the inclusion of solutions of ordinary initial value problems

  • H. J. Stetter
Plenary Lectures
Part of the Lecture Notes in Mathematics book series (LNM, volume 1192)


True Solution Interval Arithmetic Inclusion Problem Problem Algorithm Order Ordinary Differential Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J.CONRADT, Ein Intervallverfahren zur Einschlieβung des Fehlers einer Näherungslösung…, Freiburger Intervall-Berichte 80/1, 1980.Google Scholar
  2. [2]
    P.EIJGENRAAM, The solution of initial value problems using interval arithmetic, Math. Centre Tracts 144, 1981.Google Scholar
  3. [3]
    L.W. JACKSON, Interval arithmetic error-bounding algorithms, SINUM 12(1975) 223–238.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    N.J. LEHMANN, Fehlerschranken für Näherungslösungen bei Differentialgleichungen, Numer. Math. 10(1967) 261–288.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    U. MARCOWITZ, Fehlerschätzung bei Anfangswertaufgaben von gew. Diffgln…, Numer. Math. 24(1975) 249–275.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    R.E.MOORE, Interval Analysis, Prentice Hall Inc., 1966.Google Scholar
  7. [7]
    K.NICKEL, Using interval methods for the numerical solution of ODEs, MRC Tech. Summary Rep. #2590, 1982.Google Scholar
  8. [8]
    J. SCHRÖDER, Fehlerabschätzung mit Rechenanlagen bei gew. Diffgln. 1. Ordn., Numer. Math. 3(1961) 39–61.MathSciNetCrossRefGoogle Scholar
  9. [9]
    W.WALTER, Differential — und Integralungleichungen, Springer-Tracts in Nat. Phil. vol. 2, 1964.Google Scholar

Copyright information

© Equadiff 6 and Springer-Verlag 1986

Authors and Affiliations

  • H. J. Stetter
    • 1
  1. 1.Technical University ViennaWienAustria

Personalised recommendations