Advertisement

Equadiff 6 pp 35-48 | Cite as

Boundary value problems in weighted spaces

  • A. Kufner
Plenary Lectures
Part of the Lecture Notes in Mathematics book series (LNM, volume 1192)

Keywords

Weight Function Weak Solution Dirichlet Problem Monotone Operator Neumann Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    KUFNER, A.: Weighted Sobolev spaces. J. Wiley & Sons, Chichester-New York-Brisbane-Toronto-Singapore 1985zbMATHGoogle Scholar
  2. [1]
    KUFNER, A.; OPIC, B.: The Dirichlet problem and weighted spaces I. Časopis Pěst. Mat. 108 (1983), 381–408MathSciNetzbMATHGoogle Scholar
  3. [2]
    : How to define reasonably weighted Sobolev spaces. Comment.Math. Univ. Carolinae 25(3) (1984), 537–554MathSciNetzbMATHGoogle Scholar
  4. [3]
    The Dirichlet problem and weighted spaces II. To appear in Časopis Pěst. Mat.Google Scholar
  5. [1]
    KUFNER, A.; VOLDŘICH, J.: The Neumann problem in weighted Sobolev spaces. Math. Rep. Roy. Soc. CanadaGoogle Scholar
  6. [1]
    KUFNER, A.; RÁKOSNÍK, J.: Linear elliptic boundary value problems and weighted Sobolev spaces: A modified approach. Math. Slovaca 34(1984), No.2 185–197MathSciNetzbMATHGoogle Scholar
  7. [1]
    NEČAS, J.: Sur une méthode pour résoudre les équations aux dérivées partielles du type elliptique, voisine de la variationnelle. Ann. Scuola Norm. Sup. Pisa 16(1962), 305–326MathSciNetzbMATHGoogle Scholar
  8. [2]
    NEČAS, J.: Les méthodes directes en théorie des équations elliptiques. Academia, Prague & Masson et Cie, Paris 1967Google Scholar
  9. [1]
    VOLDŘICH, J.: A remark on the solvability of boundary value problems in weighted spaces. To appear in Comment Math. Univ. CarolinaeGoogle Scholar

Copyright information

© Equadiff 6 and Springer-Verlag 1986

Authors and Affiliations

  • A. Kufner
    • 1
  1. 1.Mathematical InstituteCzechoslovak Academy of SciencesPrague 1Czech Republic

Personalised recommendations