Advertisement

Equadiff 6 pp 17-22 | Cite as

Free boundary problems in fluid dynamics

  • A. Friedman
Plenary Lectures
Part of the Lecture Notes in Mathematics book series (LNM, volume 1192)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    H.W. Alt and A. Caffarelli, Existence and regularity for a minimum problem with free boundary. J. Reine Angew. Math. 105 (1981), 105–144.MathSciNetzbMATHGoogle Scholar
  2. [2]
    H.W. Alt, L.A. Caffarelli and A. Friedman, Axially symmetric jet flows, Arch. Rat. Mech. Anal. 81 (1983), 97–149.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    H.W. Alt, L.A. Caffarelli and A. Friedman, Asymmetric jet flows, Comm. Pure Appl. Math. 35 (1982), 29–68.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    H.W. Alt, L.A. Caffarelli and A. Friedman, Jet flows with gravity, J. Reine Angew. Math. 331 (1982), 58–103.MathSciNetzbMATHGoogle Scholar
  5. [5]
    H.W. Alt, L.A. Caffarelli and A. Friedman, Variational problems with two phases and their free boundaries, Trans. Amer. Math. Soc., 282 (1984), 431–461.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    H.W. Alt, L.A. Caffarelli and A. Friedman, Jets with two fluids I: one free boundary, Indiana Univ. Math. J., 33 (1984), 213–247.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    H.W. Alt, L.A. Caffarelli and A. Friedman, Jets with two fluids II: two free boundaries, Indiana Univ. Math. J., 33 (1984), 367–391.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    H.W. Alt, L.A. Caffarelli and A. Friedman, A free boundary problem for quasi-linear elliptic equations, Ann. Sc. Norm. Sup. Pisa, 11 (1984), 1–44.MathSciNetzbMATHGoogle Scholar
  9. [9]
    H.W. Alt, L.A. Caffarelli and A. Friedman, Compressible flows of jets and cavities, J. Diff. Eqs., 56 (1985), 82–141.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    H.W. Alt, L.A. Caffarelli and A. Friedman, The dam problem with two fluids, Comm. Pure Appl. Math., 37 (1984), 601–646.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    H.W. Alt, L.A. Caffarelli and A. Friedman, Abrupt and smooth separation of free boundaries in flow problems, Scu. Norm. Sup. Pisa, to appear.Google Scholar
  12. [12]
    G.D. Birkhoff and E.H. Zarantonello, Jets, wakes and cavities, Academic Press, New York, 1957.zbMATHGoogle Scholar
  13. [13]
    L.A. Caffarelli and A. Friedman, Axially symmetric in finite cavities, Indiana Univ. Math. J. 30 (1982), 135–160.MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    R. Finn, Some theorems on discontinuity of plane fluid motion, J.D'Analyse Math. 4 (1954/6), 246–291.MathSciNetCrossRefGoogle Scholar
  15. [15]
    A. Friedman, Variational principles and free boundary problems, John Wiley, New York, 1982.zbMATHGoogle Scholar
  16. [16]
    A. Friedman, Axially symmetric cavities in rotational flows, Comm. in P.D.E., 8 (1983), 949–997.MathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    A. Friedman and S. Stojanovic, A free boundary problem associated with icing in a chanel, to appear.Google Scholar
  18. [18]
    A. Friedman and T.I. Vogel, Cavitational flow in a chanel with oscillatory wall, Nonlinear Analysis, 7 (1983), 1157–1192.MathSciNetCrossRefGoogle Scholar
  19. [19]
    P.R. Garabedian, H. Lewy and M. Schiffer, Axially symmetric cavitational flow, Ann. of Math. 56 (1952), 560–602.MathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    P.R. Garabedian and D.C. Spencer, Extremal methods in cavitational flow, J. Rat. Mech. Anal. 1 (1952), 350–409.MathSciNetzbMATHGoogle Scholar
  21. [21]
    D. Gilbarg, Uniqueness of axially symmetric flows with free boundaries, J. Ra. Mech. Anal. 1 (1952), 309–320.MathSciNetzbMATHGoogle Scholar
  22. [22]
    D. Gilbarg, Jets and cavities, in Handbuch der Physik, vol. 9, Springer-Verlag New York, 1960.Google Scholar
  23. [23]
    J. Leray, Les Problèmes de représentation conforme de Helmholtz I, II, Comm. Math. Helv. 8 (1935), 149–180; 250–263.MathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    J. Serrin, Existence theorems for some hydrodynamical free boundary porblems, J. Rat. Mech. Anal. 1 (1952), 1–48.MathSciNetzbMATHGoogle Scholar
  25. [25]
    L. Ting, D.S. Ahluwalia and M.J. Miksis, Solutions of a class of mixed free boundary problems, SIAM J. Appl. Math., 43 (1983), 759–775.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Equadiff 6 and Springer-Verlag 1986

Authors and Affiliations

  • A. Friedman
    • 1
  1. 1.Northwestern UniversityEvanstonUSA

Personalised recommendations