Mathematical and numerical study of nonlinear problems in fluid mechanics

  • M. Feistauer
Plenary Lectures
Part of the Lecture Notes in Mathematics book series (LNM, volume 1192)


Finite Element Solution Transonic Flow Rotational Flow Polygonal Domain Numerical Quadrature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. Benda, M. Feistauer: Rotational subsonic flow of an ideal compressible fluid in axially symmetric channels. Acta Polytechnica, 7(IV, 3), 1978, 95–105 (in Czech).Google Scholar
  2. [2]
    M.O. Bristeau, R. Glowinski, J. Periaux, P. Perrier, O. Pironneau, G. Poirier: Application of optimal control and finite element methods to the calculation of transonic flows and incompressible viscous flows. Rapport de Recherche no. 294 (avril 1978), LABORIA IRIA.Google Scholar
  3. [3]
    Ph.G. Ciarlet: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam-New York-Oxford, 1978.zbMATHGoogle Scholar
  4. [4]
    M. Feistauer: On two-dimensional and three-dimensional axially symmetric flows of an ideal incompressible fluid. Apl. mat. 22 (1977), 199–214.MathSciNetzbMATHGoogle Scholar
  5. [5]
    M. Feistauer: Mathematical study of three-dimensional axially symmetric stream fields of an ideal fluid. Habilitation Thesis, Faculty of Math. and Physics, Prague, 1979 (in Czech).Google Scholar
  6. [6]
    M. Feistauer: Solution of elliptic problem with not fully specified Dirichlet boundary value conditions and its application in hydrodynamics. Apl. mat. 24(1979), 67–74.MathSciNetzbMATHGoogle Scholar
  7. [7]
    M. Feistauer: Numerical solution of non-viscous axially symmetric channel flows. In: Methoden und Verfahren der mathematischen Physik, Band 24, 65–78, P. Lang-Verlag, Frankfurt am Main-Bern, 1982.Google Scholar
  8. [8]
    M. Feistauer: Mathematical study of rotational incompressible nonviscous flows through multiply connected domains. Apl. mat. 26 (1981) 345–364.MathSciNetzbMATHGoogle Scholar
  9. [9]
    M. Feistauer: Subsonic irrotational flows in multiply connected domains. Math. Meth. in the Appl. Sci. 4(1982), 230–242.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    M. Feistauer: On irrotational flows through cascades of profiles in a layer of variable thickness. Apl. mat. 29(1984), 423–458.MathSciNetzbMATHGoogle Scholar
  11. [11]
    M. Feistauer: Finite element solution of non-viscous flows in cascades of blades. ZAMM 65(1985), 4, T191–T194.MathSciNetzbMATHGoogle Scholar
  12. [12]
    M. Feistauer: Mathematical and numerical study of flows through cascades of profiles. In: Proc. of "International Conference on Numerical Methods and Applications" held in Sophia, August 27–September 2, 1984 (to appear).Google Scholar
  13. [13]
    M. Feistauer: On the finite element approximation of a cascade flow problem. Numer. Math. (to appear).Google Scholar
  14. [14]
    M. Feistauer: Finite element solution of flow problems with trailing conditions (to appear).Google Scholar
  15. [15]
    M. Feistauer, J. Římánek: Solution of subsonic axially symmetric stream fields. Apl. mat. 20(1975), 266–279.MathSciNetzbMATHGoogle Scholar
  16. [16]
    M. Feistauer, J. Felcman, Z. Vlášek: Calculation of irrotational flows through cascades of blades in a layer of variable thickness. Research report, ŠKODA Plazen, 1983 (in Czech).Google Scholar
  17. [17]
    M. Feistauer, J. Felcman, Z. Vlášek: Finite element solution of flows through cascades of profiles in a layer of variable thickness. Apl. mat. (to appear).Google Scholar
  18. [18]
    M. Feistauer, A. Ženíšek: Finite element solution of nonlinear elliptic problems (submitted to Numer. Math.)Google Scholar
  19. [19]
    J.L. Lions: Quelques Methodes de Résolution des Problémes aux Limites non Linéaires. Dunod, Paris, 1969.Google Scholar
  20. [20]
    J. Nečas: Über Grenzwerte von Funktionen, welche ein endliches Dirichletsches Integral haben. Apl. mat. 5(1960), 202–209.MathSciNetzbMATHGoogle Scholar
  21. [21]
    J. Nečas: Les Méthodes Directes en Théorie des Équations Elliptiques. Academia, Prague, 1967.Google Scholar
  22. [22]
    J. Nečas: Introduction to the Theory of Nonlinear Elliptic Equations. Teubner-Texte zur Mathematik, Band 52, Leipzig, 1983.Google Scholar
  23. [23]
    G. Strang: Variational crimes in the finite element method. In: The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations (A.K. Aziz, Ed.), Academic Press, New York, 1972, 689–710.CrossRefGoogle Scholar
  24. [24]
    A. Ženíšek: How to avoid the use of Green's theorem in the Ciarlets's and Raviart's theory of variational crimes (to appear).Google Scholar

Copyright information

© Equadiff 6 and Springer-Verlag 1986

Authors and Affiliations

  • M. Feistauer
    • 1
  1. 1.Faculty of Mathematics and PhysicsCharles UniversityPrague 1Czech Republic

Personalised recommendations