Advertisement

Points, lignes et systemes d'arret flous et probleme d'arret optimal

  • G. Mazziotto
  • A. Millet
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1204)

Keywords

Localement Convexe Condition Suivante Verifie Facilement Etant Donnee Toute Fonction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. /1/.
    J.R. BAXTER et R.V. CHACON: Compactness of stopping times. Z. Wahr. v. Geb. 40 (1981), 169–181.MathSciNetCrossRefzbMATHGoogle Scholar
  2. /2/.
    J.M. BISMUT: Temps d'arrêt optimal, quasi-temps d'arrêt et retournement du temps. Ann. Prob. 7–6 (1979), 933–964.MathSciNetCrossRefzbMATHGoogle Scholar
  3. /3/.
    N. BOURBAKI: Espaces vectoriels topologiques. Hermann, Paris 1971.zbMATHGoogle Scholar
  4. /4/.
    R. CAIROLI et J.B. WALSH: Stochastic integrals in the plane. Acta Mathematica 134 (1975), 11–183.MathSciNetCrossRefzbMATHGoogle Scholar
  5. /5/.
    R.C. DALANG: Sur l'arrêt optimal de processus à temps multidimensionnel continu. Sém. Proba. XVIII. Lect. N. Maths 1059, Springer-Verlag, Berlin 1984.zbMATHGoogle Scholar
  6. /6/.
    C. DELLACHERIE et P.A. MEYER: Probabilités et Potentiel. Hermann, Paris 1975.zbMATHGoogle Scholar
  7. /7/.
    C. DELLACHERIE, P.A. MEYER et M. YOR: Sur certaines propriétés des espaces H1 et BMO. Sém. Proba XII. Lect. N. Maths 649. Springer-Verlag, Berlin 1978.zbMATHGoogle Scholar
  8. /8/.
    G.A. EDGAR, A. MILLET et L. SUCHESTON: On compactness and optimality of stopping times. Martingale Theory in Harmonic Analysis and Banach spaces. Lect. N. Maths 939. Springer-Verlag, Berlin 1981, pp. 36–61.CrossRefGoogle Scholar
  9. /9/.
    N. EL KAROUI: Les aspects probabilistes du controle stochastique. Ecole d'Eté de Saint-Flour IX-1979. Lect. N. Maths 876, Springer-Verlag, Berlin 1981.zbMATHGoogle Scholar
  10. /10/.
    N. GHOUSSOUB: An integral representation of randomized probabilities and its applications. Sém. Proba. XVI. Lect. N. Maths 920. Springer-Verlag, Berlin 1982.zbMATHGoogle Scholar
  11. /11/.
    U. KRENGEL et L. SUCHESTON: Stopping rules and tactics for processes indexed by directed sets. J. Mult. Anal. 11 (1981), 199–229.MathSciNetCrossRefzbMATHGoogle Scholar
  12. /12/.
    A. MANDELBAUM et R.J. VANDERBEI: Optimal stopping and supermartingales over partially ordered sets. Z. Wahr. V. Geb. 57 (1981), 253–264.MathSciNetCrossRefzbMATHGoogle Scholar
  13. /13/.
    G. MAZZIOTTO et A. MILLET: Stochastic control of two-parameter processes. Proposé pour publication 1984.Google Scholar
  14. /14/.
    E. MERZBACH: Stopping for two-dimensional stochastic processes. Stoch. Proc. and Appl. 10 (1980), 49–63.MathSciNetCrossRefzbMATHGoogle Scholar
  15. /15/.
    P.A. MEYER: Convergence faible et compacité des temps d'arrêt d'après Baxter et Chacon. Sém. Proba XII. Lect. N. Maths 649. Springer-Verlag, Berlin 1978.zbMATHGoogle Scholar
  16. /16/.
    P.A. MEYER: Théorie élémentaire des processus à deux indices. Colloque ENST-CNET sur les processus à deux indices. Lect. N. Maths 863. Springer-Verlag, Berlin 1981.zbMATHGoogle Scholar
  17. /17/.
    A. MILLET: On randomized tactics and optimal stopping in the plane. Annals Prob. 13 (1985), à paraître.Google Scholar
  18. /18/.
    H.H. SCHAEFER: Topological vector spaces. Springer-Verlag, Berlin 1971.CrossRefzbMATHGoogle Scholar
  19. /19/.
    J.B. WALSH: Optional increasing paths. Colloque ENST-CNET sur les processus à deux indices. Lect. N. Maths 863. Springer-Verlag, Berlin 1981.Google Scholar
  20. /20/.
    E. WONG et M. ZAKAI: Martingales and stochastic integrals for processes with a multidimensional parameter. Z. Wahr. V. Geb. 29 (1974), 109–122.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • G. Mazziotto
    • 1
  • A. Millet
    • 2
  1. 1.PAA/TIM/MTI — C.N.E.T.Issy Les Moulineaux
  2. 2.Faculté des SciencesUniversité d'AngersAngers

Personalised recommendations