Advertisement

Estimations de grandes déviations pour les processus de diffusion a paramètre multidimensionnel

  • H. Doss
  • M. Dozzi
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1204)

Keywords

Strong Martingale Wiener Classique Grandes Deviation Resolution Stochastique Mouvement Brownien 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. [1]
    AZENCOTT R.: Grandes déviations et applications. École d'été de St. Flour VII 78. Lecture Notes in Math. 774, Springer (1980).Google Scholar
  2. [2]
    CAIROLI R., WALSH J.B.: Stochastic integrals in the plane. Acta Math. 134 (1975), 111–183.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    DOSS H.: Sur une résolution stochastique de l'équation de Schrödinger à coefficients analytiques. Commun. Math. Phys. 73 (1980), 247–264.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    DOSS H., PRIOURET P.: Petites perturbations de systèmes dynamiques avec reflexion. Séminaire de Probabilités XVII, Lecture Notes in Math. 986 (1983), 353–370.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    DOZZI M., PURI M.L.: Strong solutions of stochastic differential equations for multiparameter processes. Preprint.Google Scholar
  6. [6]
    KOREZLIOGLU H., MAZZIOTTO G., SZPIRGLAS J.: Nonlinear filtering equations for two-parameter semimartingales. Stochastic Processes and their Applications 15 (1983), 239–269.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    KUO H.H.: Gaussian measures in Banach spaces. Lecture Notes in Math. 463, Springer Verlag, Berlin (1975).zbMATHGoogle Scholar
  8. [8]
    NUALART D.: On the distribution of a double stochastic integral. Z. Wahrscheinlichkeitstheorie verw. Gebiete 65 (1983), 49–60.MathSciNetCrossRefGoogle Scholar
  9. [9]
    STROOCK D.W.: An introduction to the theory of large deviations. Springer Verlag, New York (1984).CrossRefzbMATHGoogle Scholar
  10. [10]
    VARADHAN S.R.S.: Asymtotic probabilities and differential equations. Comm. Pure Appl. Math. 19 (1966), 261–286.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    VENTSEL A.D., FREIDLIN M.J.: Random Perturbations of Dynamical Systems, Springer Verlag, New York (1984).Google Scholar
  12. [12]
    WALSH J.B.: Convergence and regularity of multiparameter strong martingales. Z. Wahrscheinlichkeitstheorie verw. Gebiete 46(1979), 177–192.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • H. Doss
    • 1
  • M. Dozzi
    • 2
  1. 1.Laboratoire de ProbabilitésUniversité de Paris VIParis Cedex 05
  2. 2.Institut für math. StatistikUniversität BernBerne

Personalised recommendations