Poisson representation of strict regular step filtrations

  • F. B. Knight
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1204)


Poisson Process Local Martingale Jump Time Strong Markov Property Limit Ordinal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Dellacherie and P.-A. Meyer, Probabilités et Potentiel. Publ. de L'institut de Math. de L'univ. Strasbourg No. XV (1975).Google Scholar
  2. 2.
    A. Benveniste and J. Jacod, Systèmes de Lévy des processus de Markov. Inventiones math., 21 (1973), 183–198.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    J. L. Doob, Stochastic Processes. Wiley, 1953.Google Scholar
  4. 4.
    F. B. Knight, Essentials of Brownian motion and diffusion. Math. Surveys 18, Amer. Math. Soc. (1981).Google Scholar
  5. 5.
    F. B. Knight, Essays on the prediction process. Lecture Notes Series 1, Inst. of Math. Statist. (1981).Google Scholar
  6. 6.
    F. B. Knight, On strict-sense forms of the Hida-Cramer representation. Seminar on Stochastic Processes, 1984. Cinlar, Chung, Getoor, editors. Birkhäusen (to appear).Google Scholar
  7. 7.
    T. Kurtz, Representations of Markov processes as multiparameter time changes. The Annals of Prob. 8 (1980), 682–715.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Y. LeJan, Temps d'arret stricts et martingales de saut. Z. Wahrscheinlichkeitstheorie verw. Geb. 44 (1978), 213–225.MathSciNetCrossRefGoogle Scholar
  9. 9.
    D. Lepingle, P. A. Meyer, and M. Yor, Extrémalité et remplissage de tribus pour certaines martingales purement discontinues. Sém. de Prob. XV, 1979/80. Lecture Notes in Math. #850, Springer-Verlag, 604–617.Google Scholar
  10. 10.
    P. A. Meyer, Generation of σ-fields by step processes. Sém. de Prob. X. Lecture Notes in Math. #511, Springer-Verlag (1976), 118–124.Google Scholar
  11. 11.
    P. A. Meyer, Demonstration simplifiée d'un theoreme de Knight. Sém. de Prob. V. Lecture Notes in Math. #191, Springer-Verlag (1971), 191–195.Google Scholar
  12. 12.
    A. O. Pittenger, Regular birth times for Markov processes. The Annals of Prob. 9, #5 (1981), 769–780.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    S. Watanabe, On discontinuous additive functionals and Lévy measures of a Markov process. Jap. J. Math. 34 (1964), 53–79.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • F. B. Knight

There are no affiliations available

Personalised recommendations