Advertisement

Cohomologie de Harrison et type d'homotopie rationnelle

  • Daniel Tanré
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1183)

Keywords

Rational Homotopy Type Nous Montrons Malcev Completion Sont Identiques Harrison Homology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. [Ba]
    Michael BARR-Harrison homology, Hochschild homology and Triples, Journal of Algebra 8, (1968), 314–323.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [Ch]
    Kuo Tsai CHEN-Extension of C function Algebra by Integrals and Malcev completion of π1, Advances in Math. 23, (1977), 181–210.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [Fe]
    Yves FELIX-Dénombrement des types de K-homotopie. Théorie de la déformation, Mémoires SMF, nouvelle série no 3, (1980).Google Scholar
  4. [Fe 1]
    Yves FELIX-Modèles bifiltrés. Can. J. Math. 33, no 26, (1981), 1448–1458.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [Fe 2]
    Yves FELIX-Espaces formels et π-formels. Conférence Marseille-Luminy (à paraître SMF).Google Scholar
  6. [H-S]
    Steve HALPERIN, James STASHEFF-Obstructions to homotopy equivalences, Advances in Math. 32, (1979), 233–279.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [Ha]
    D.K. HARRISON-Commutative algebras and cohomology T.A.M.S. 104, (1962), 191–204.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [Ho]
    G. HOCHSCHILD-On the cohomology groups of an associative algebra. Ann. of Math. 46, (1945), 58–67.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [L-S]
    Jean-Michel LEMAIRE, François SIGRIST — Dénombrement des types d'homotopie rationnelle. C.R.A.S. t. 287 A, (1978), Paris.Google Scholar
  10. [Me]
    Pierre MERLE-Formalité des espaces et des applications continues. Thèse de 3ème cycle, Nice, (1983).Google Scholar
  11. [Qu]
    Daniel QUILLEN-On the (co)-homology of commutative rings, Proc. Symp. Pure Math. 17, A.M.S. Providence (1970), 65–87.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [S-S]
    Michael SCHLESSINGER, James STASHEFF — Deformation theory and rational homotopy type (à paraître).Google Scholar
  13. [Su]
    Denis SULLIVAN-Infinitesimal computations in Topology, Publ. I.H.E.S. 47, (1977), 269–331.MathSciNetCrossRefzbMATHGoogle Scholar
  14. [Ta]
    Daniel TANRÉ-Homotopie rationnelle: Modèles de Chen, Quillen, Sullivan. Lecture notes in Math. 1025, (1983), Springer Verlag.Google Scholar
  15. [Ta 1]
    Daniel TANRÉ-Thèse, Lille (1982).Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • Daniel Tanré
    • 1
  1. 1.ERA C.N.R.S. Of 590Université des Sciences et Techniques de LILLE U.E.R. de Mathématiques Pures et AppliquéesVilleneuve D'Ascq CedexFrance

Personalised recommendations