The general extension of a local ring and mixed multiplicities

  • Jan-Erik Roos
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1183)


Prime Ideal Local Ring Maximal Ideal General Element General Extension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Abhyankar. On the valuations centered in a local domain. Amer.J.Math.78(1956) pp321–348MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    A. Grothendieck. Elements de Géomètrie Algebrique. Publ.Math.IHES No 11(1961) Google Scholar
  3. 3.
    D.G. Northcott. A general theory of one-dimensional local rings. Proc.Glasgow Math.Association 2(1956) pp159–169.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    D.G. Northcott A generalisation of a theorem on the content of polynomials. Proc.Cam.Phil.Soc.55(1959) pp282–288MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    " " Lectures on Rings,modules and multiplicities. Cambridge University Press, Cambridge(1968)CrossRefzbMATHGoogle Scholar
  6. 6.
    D. Rees Degree Functions in Local rings. Proc.Cam.Phil.Soc.57(1961) pp1–7MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    " " Multiplicities, Hilbert Functions and degree functions (in"Commutative Algebra;Durham 1981") London Math.Soc.lecture note series no72(1982) pp 70–78.Google Scholar
  8. 8.
    " " Asymptotic Properties of Ideals(Lectures given in Nagoya 1983)To be published in the L.M.S Lecture Note series Google Scholar
  9. 9.
    " " Generalisations of Reductions and Mixed Multiplicities. Jour.London.Math.Soc.29(1984)397–414.CrossRefzbMATHGoogle Scholar
  10. 10.
    B.Teissier. Cycles evanescents, sections planes et Conditions de Whitney.In"Singularites a Cargese 1972 Asterisque 7–8(1973) Google Scholar
  11. 11.
    D.J. Wright General Multiplicity Theory Proc.London.Math.Soc. (3) 15(1965) pp269–288MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    O.Zariski and P.Samuel Commutative Algebra.volume II D.von Nostrand (Princeton)1960.Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • Jan-Erik Roos

There are no affiliations available

Personalised recommendations