On the subalgebra generated by the one-dimensional elements in the Yoneda ext-algebra

  • Clas Löfwall
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1183)


Hopf Algebra Local Ring Hilbert Series Homogeneous Element Minimal Resolution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. ANDRÉ, Hopf algebras with divided powers, J. Algebra 18 (1971), 19–50.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    L.L. AVRAMOV, On the Hopf algebra of a local ring, Izvestija Akad. Nauk SSSR ser. mat. 38 (1974), 253–277.MathSciNetzbMATHGoogle Scholar
  3. [3]
    J. BACKELIN, A distributiveness property of augmented algebras, and some related homological results, part of thesis, Stockholm 1982 (defended January 21, 1983).Google Scholar
  4. [4]
    H. CARTAN, Homologie et cohomologie d'une algèbre graduée, Séminaire Henri Cartan, 11e année 58/59, exposé 15.Google Scholar
  5. [5]
    R. FRÖBERG, Determination of a class of Poincaré series, Math.Scand. 37 (1975), 29–39.MathSciNetzbMATHGoogle Scholar
  6. [6]
    T.H. GULLIKSEN, G. LEVIN, Homology of local rings, Queenś Paper No. 20, Queen's University, Kingston, Ontario, (1969).zbMATHGoogle Scholar
  7. [6']
    T.H. GULLIKSEN, On the Hilbert series of the homology of differential graded algebras, Math. Scand., 46 (1980), 15–22.MathSciNetzbMATHGoogle Scholar
  8. [7]
    G. LEMAIRE, Algèbres connexes et Homologie des Espaces de Lacets, Lecture Notes in Mathematics, No. 422, Springer Verlag, Berlin, 1974.zbMATHGoogle Scholar
  9. [8]
    G. LEVIN, Local rings and Golod homomorphisms, J. Algebra 37 (1975), 266–289.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [9]
    G. LEVIN, Two conjectures in the homology of local rings, J Algebra 30 (1974), 56–74.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [10]
    C. LÖFWALL, The Poincaré series for a class of local rings, Preprint series, University of Stockholm, No. 8, 1975.Google Scholar
  12. [11]
    J.W. MILNOR, J.C. MOORE, On the structure of Hopf algebras, Ann. of Math. 81 (1965), 211–264.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [12]
    S. PRIDDY, Koszul resolutions, Trans. A.M.S. 152 (1970), 39–60.MathSciNetCrossRefzbMATHGoogle Scholar
  14. [13]
    J.-E. ROOS, Relations between the Poincaré-Betti series of loop spaces and of local rings, Lecture Notes in Math., 740, Springer-Verlag, Berlin, 1979.zbMATHGoogle Scholar
  15. [14]
    J-P. SERRE, Algèbre locale multiplicités, Lecture notes in Mathematics, No. 11, 3 ed., Springer Verlag, Berlin, 1975.zbMATHGoogle Scholar
  16. [15]
    G. SJÖDIN, A set of generators for ExtR(k,k), Math. Scand., 38 (1976), 1–12.Google Scholar
  17. [16]
    G. SJÖDIN, Hopf algebras and derivations, J. Algebra, 64 (1980), 218–229.MathSciNetCrossRefzbMATHGoogle Scholar
  18. [17]
    G. SJÖDIN, A characterization of local complete intersections in terms of the Ext-algebra, J. Algebra, 64 (1980), 214–217.MathSciNetCrossRefzbMATHGoogle Scholar
  19. [18]
    G. SJÖDIN, The Ext-algebra of a Golod ring, Journal of Pure and Applied Algebra, 38, 1985, 337–351.MathSciNetCrossRefzbMATHGoogle Scholar
  20. [19]
    L. SMITH, Split extensions of Hopf algebras and semi-tensor products, Math. Scand. 26 (1970), 17–41.MathSciNetzbMATHGoogle Scholar
  21. [20]
    H. WIEBE, Über homologische invarianten lokaler ringe, Math. Ann. 179 (1969), 257–274.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • Clas Löfwall
    • 1
  1. 1.Department of MathematicsUniversity of StockholmStockholmSweden

Personalised recommendations