Advertisement

Séries de Bass des modules de syzygie

  • Jack Lescot
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1183)

Keywords

Element Homogene Projectivement Equivalent Poincare Series Suite Exacte Sont Identiques 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. [1]
    H. BASS.-On the ubiquity of Gorenstein rings, Math. Z., 82 (1963), 8–28.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    R. BØGVAD.-Gorenstein rings with transcendental Poincaré series, Math. Scand., 53, 1983, 5–15.MathSciNetzbMATHGoogle Scholar
  3. [3]
    H. CARTAN, S. EILENBERG.-Homological Algebra, Princeton Univ. Press, Princeton, N.J., 1956.zbMATHGoogle Scholar
  4. [4]
    H.B. FOXBY.-Isomorphisms between complexes with applications to the homological theory of modules, Math. Scand., 40 (1977), 5–19.MathSciNetzbMATHGoogle Scholar
  5. [5]
    F. GHIONE, T.H. GULLIKSEN.-Some reduction formulas for the Poincaré series of modules, Atti. Accad. naz. Lincei LVIII Ser., Rend., Cl. Sci. fis. mat. natur., 58 (1975), 82–91.MathSciNetzbMATHGoogle Scholar
  6. [6]
    T.H. GULLIKSEN, G.L. LEVIN.-Homology of local rings, Queen's papers in pure and applied Mathematics, no 20, Queen's Univ., Kingston, Ontario, (1969).zbMATHGoogle Scholar
  7. [7]
    J. LESCOT.-La série de Bass d'un produit fibré d'anneaux locaux, Comptes-rendus, Acad. Sci., Paris, 293, Série A (1981), 569–571.MathSciNetzbMATHGoogle Scholar
  8. [8]
    J. LESCOT.-La série de Bass d'un produit fibré d'anneaux locaux, Séminaire d'Algèbre P. Dubreil et M.P. Malliavin (1982), Lecture Notes in Mathematics 1029, 218–239, Springer 1983.Google Scholar
  9. [9]
    J. LESCOT.-Produit homologique associé à un module et applications, Prépublication no 14 (1983), Dép. de Math. et de Mécanique, Univ. de CAEN.Google Scholar
  10. [10]
    C. PESKINE, L. SZPIRO.-Dimension projective finie et cohomologie locale, Inst. Hautes Etudes Sci. Publ. Math., Paris, no 42 (1973), 47–119.Google Scholar
  11. [11]
    J.E. ROOS.-Finiteness conditions in commutative algebra and solution of a problem of Vasconcelos, Commutative Algebra, Durham 1981, Ed. by R. Sharp, London Math. Soc., Lecture Notes, Vol. 72, 1982, 179–203.Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • Jack Lescot
    • 1
  1. 1.Département de Mathématiques, Informatique et MécaniqueUniversité de CAENCaen CedexFrance

Personalised recommendations