Lusternik — Schnirelmann category: An introduction

  • Jean-Michel Lemaire
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1183)


Homotopy Type Rational Space Homotopy Fibre Rational Homotopy Type Fibration Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [FH]
    Yves FELIX and Stephen HALPERIN, Rational L.-S. category and its applications, Trans. A.M.S. 273 (1982) pp. 1–38.Google Scholar
  2. [FL]
    Yves FELTX and Jean-Michel LEMAIRE, On the mapping theorem for L.-S. category, Topology, 24, 1985, 41–43.MathSciNetCrossRefGoogle Scholar
  3. [Ga]
    Tudor GANEA, L.-S. category and strong category, Ill. J. Math. 11 (1967) pp. 331–348.MathSciNetzbMATHGoogle Scholar
  4. [Gi]
    W. GILBERT, Some examples for weak category and conilpotency, Ill. J. Math. 12 (1968) pp. 421–432.MathSciNetzbMATHGoogle Scholar
  5. [J]
    Ioan JAMES, On category in the sense of L.-S., Topology 17 (1978) pp. 331–348.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [LS]
    Jean-Michel LEMAIRE and François SIGRIST, Sur les invariants d'homotopie rationnelle liés à la L.-S. catégorie, Comm. Math. Helv. 56 (1981), 103–122.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [W]
    George WHITEHEAD, Elements of Homotopy Theory, Graduate Texts in Math. Springer-Verlag.Google Scholar
  8. [L]
    Jean-Michel LEMAIRE, Sur le type d'homotopie rationnelle des espaces de Ganéa, in Homotopie Algébrique et Algèbre Locale, Astérisque no 113–114 (1984), pp 238–247.Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • Jean-Michel Lemaire
    • 1
  1. 1.Laboratoire de MathématiquesUniversité de Nice Parc ValroseNice-Cedex

Personalised recommendations