Advertisement

Sur l'operation d'holonomie rationnelle

  • Y. Felix
  • J. C. Thomas
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1183)

Keywords

Fibre Homotopique Rational Homotopy Theory Nous Montrons Version Graduee Suite Spectrale 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. [A.A]
    ANDREWS P. and ARKOWITZ M.-Sullivan's minimal models and higher order Whitehead products. Can. J. of Math. 30, no 5 (1978), 961–982.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [A.H.]
    AVRAMOV L. and HALPERIN S.-Through the looking glass: A dictionary between rational homotopy theory and local algebra (These proceedings).Google Scholar
  3. [Bo]
    BØGVAD R.-Graded Lie algebras in local algebra and rational homotopy. Thesis Stockholm (1983).Google Scholar
  4. [DGMS]
    DELIGNE P., GRIFFITHS P., MORGAN J. and SULLIVAN D.-Real homotopy theory of Kähler manifolds. Invent. Math. 29 (1975), 245–274.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [E.M]
    EILENBERG S. and MOORE J.C.-Homology and fibrations I. Coalgebras, cotensor product and its derived functors. Comment. Math. Helv. 40 (1966), 199–236.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [F.M]
    FELIX Y. and HALPERIN S.-Rational L.S. category and its applications. Trans. A.M.S. 273 (1983), 1–37.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [F.H.T.]
    FELIX Y., HALPERIN S. et THOMAS J.C.-Sur certaines algèbres de Lie de dérivations. Ann. Inst. Fourier, 32, (1982), 143–150.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [F.T]
    FELIX Y. et THOMAS J.C.-Sur la structure des espaces de catégorie 2. A paraître Ill. J. of Math.Google Scholar
  9. [Ga-1]
    GANEA T.-A generalization of the homology and homotopy suspension. Comment. Math. Helvet. 39 (1965), 295–322.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [Ga-2]
    GANEA T.-On monomorphisms in homotopy theory. Topology, Vol. 6, (1967), 149–152.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [Go]
    GOTTLIEB D.-On fiber spaces and the evaluation map. Ann. of Math. 87 (1968), 42–55.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [G.H.V]
    GREUB W., HALPERIN S. and VANSTONE R.-Connections, curvature and cohomology III. Academic Press, 1976.Google Scholar
  13. [Gr]
    GRIVEL P.P.-Formes différentielles et suites spectrales. Ann. Inst. Fourier, 29 (1979), 17–37.MathSciNetCrossRefzbMATHGoogle Scholar
  14. [Gu-1]
    GULLIKSEN T.-A change of ring theorem with applications to Poincaré series and intersection multiplicity. Math. Scand. 34 (1974), 167–183.MathSciNetzbMATHGoogle Scholar
  15. [Gu-2]
    GULLIKSEN T.-On the Hilbert series of the homology of differentiel graded algebras. Math. Scand. 46 (1980), 15–22.MathSciNetzbMATHGoogle Scholar
  16. [Ha]
    HALPERIN S.-Lectures on minimal models. Mémoire de la S.M.F. no 9/10 (1983).Google Scholar
  17. [H.L]
    HALPERIN S. et LEMAIRE J.M.-Suites inertes dans les algèbres de Lie. Preprint (1983), Nice. (To appear in Math. Scand.)Google Scholar
  18. [L.S]
    LEMAIRE J.M. et SIGRIST F.-Sur les invariants d'homotopie rationnelle liés à la L.S. catégorie. Comment. Math. Helv. 56 (1981), 103–122.MathSciNetCrossRefzbMATHGoogle Scholar
  19. [Le]
    LEVIN G.-Finitely generated Ext-algebras. Math. Scand. 49 (1981), 161–180.MathSciNetzbMATHGoogle Scholar
  20. [Me]
    MEIER W.-Some topological properties of Kähler manifolds and homogeneous spaces. Math. Z. 183, (1983), 473–481.MathSciNetCrossRefzbMATHGoogle Scholar
  21. [Op]
    OPREA J.-Infinite implications in rational homotopy theory. To appear in Proceedings of A.M.S.Google Scholar
  22. [Q]
    QUILLEN D.-Rational homotopy theory. Ann. of Math. 90 (1969), 205–295.MathSciNetCrossRefzbMATHGoogle Scholar
  23. [R]
    ROOS J.E.-Homology of loop spaces and local rings. Proc. of the 18th scand. congress Math. Aarhus (1980). (Progress in Mathematics, no 11, Birhäuser, 1981.)Google Scholar
  24. [St]
    STASHEFF J.-Parallel transport and classification of fibrations. Lect. Notes in math. No 428, (1974).Google Scholar
  25. [Su]
    SULLIVAN D.-Infinitesimal computations in topology. Publ. I.H.E.S. 47 (1977), 269–331.MathSciNetCrossRefzbMATHGoogle Scholar
  26. [Ta]
    TANRÈ D.-Homotopie rationnelle: Modèles de Chen, Quillen, Sullivan. Lect. Notes in Math. no 1025 (1983), Springer Verlag.Google Scholar
  27. [Th]
    THOMAS J.C.-Rational homotopy of Serre fibrations. Ann. Inst. Fourier 31 (1978), 71–90.MathSciNetCrossRefzbMATHGoogle Scholar
  28. [V]
    VIGUÈ M.-Réalisation de morphismes donnés en cohomologie et suite spectrale d'Eilenberg-Moore. Trans. A.M.S. 265 (1981), 447–484.CrossRefzbMATHGoogle Scholar
  29. [W]
    WHITEHEAD G.-Elements of homotopy theory. Graduate texts in math. (1978), Springer Verlag.Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • Y. Felix
    • 1
  • J. C. Thomas
    • 2
  1. 1.Universite Catholique de LouvainLouvain-La-NeuveBelgique
  2. 2.Universite de Lille IVilleneuve D'Ascq CedexFrance

Personalised recommendations