When is the double Yoneda ext-algebra of a local noetherian ring again noetherian?

  • Jörgen Backelin
  • Jan-Erik Roos
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1183)


Exact Sequence Hopf Algebra Spectral Sequence Local Ring Hilbert Series 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    ANICK, D.J., A counterexample to a conjecture of Serre, Ann. Math., 115, 1982, 1–33. Correction: Ann. Math., 116, 1983, 661.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    ANICK, D.J., Connections between Yoneda and Pontrjagin algebras, Lecture Notes in Mathematics, 1051, 1984, 331–350, Springer-Verlag, Berlin, Heidelberg, New York and Tokyo.zbMATHGoogle Scholar
  3. [3]
    ATIYAH, M.F. and MACDONALD, I.G. Introduction to Commutative Algebra, Addison-Wesley, Reading, Mass., 1969.zbMATHGoogle Scholar
  4. [4]
    AVRAMOV, L., Local algebra and rational homotopy, Astérisque, 113–114, 1984, 15–43.MathSciNetzbMATHGoogle Scholar
  5. [5]
    AVRAMOV, L., Differential graded models for local rings, RIMS Kokyuroku, 446, 1981, 80–88, Kyoto Research Institute for Mathematical Sciences, Kyoto, Japan.zbMATHGoogle Scholar
  6. [6]
    BACKELIN, J., Les anneaux locaux à relations monomiales ont des séries de Poincaré-Betti rationnelles, Comptes rendus Acad. Sc. Paris, 295, Série I, 1982, 607–610.MathSciNetzbMATHGoogle Scholar
  7. [7]
    BØGVAD,R. and HALPERIN, S., On a conjecture of Roos, These Proceedings.Google Scholar
  8. [8]
    CARTAN, H. and EILENBERG, S., Homological Algebra, Princeton Univ. Press, Princeton, 1956.zbMATHGoogle Scholar
  9. [9]
    COHEN, F.R., MOORE, J.C. and NEISENDORFER, J.A., Torsion in homotopy groups, Ann. Math., 109, 1979, 121–168.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    FRÖBERG, R., A study of graded extremal rings and of monomial rings, Math. Scand., 51, 1982, 22–34.MathSciNetzbMATHGoogle Scholar
  11. [11]
    GOVOROV, V.E., Dimension and multiplicity of graded algebras, Siberian Math. J., 14, 1973, 840–845.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    GULLIKSEN, T.H., A change of ring theorem with applications to Poincaré series and intersection multiplicity, Math. Scand. 34, 1974, 167–183.MathSciNetzbMATHGoogle Scholar
  13. [13]
    GULLIKSEN, T.H. and LEVIN, G., Homology of local rings, Queen's Papers in Pure Appl. Math., no 20, Queen's Univ., Kingston, Ontario, 1969.zbMATHGoogle Scholar
  14. [14]
    JACOBSSON, C., Finitely presented graded Lie algebras and homomorphisms of local rings, J. Pure Appl. Algebra, 38, 1985, 243–253.MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    LEMAIRE, J.-M., Algèbres connexes et homologie des espaces de lacets, Lecture Notes in Mathematics, 422, 1974, Springer-Verlag, Berlin, Heidelberg, New York.zbMATHGoogle Scholar
  16. [16]
    LESCOT, Thèse, Caen 1985 and letter from J. LESCOT to J.-E. ROOS, June 14, 1985.Google Scholar
  17. [17]
    LEVIN, G., Large homomorphisms of local rings, Math. Scand., 46, 1980, 209–215.MathSciNetzbMATHGoogle Scholar
  18. [18]
    LEVIN, G., Finitely generated Ext algebras, Math. Scand., 49, 1981, 161–180.MathSciNetzbMATHGoogle Scholar
  19. [19]
    MACLANE, S., Homology, Springer-Verlag, Berlin, Heidelberg, New York, 1963.CrossRefzbMATHGoogle Scholar
  20. [20]
    MILNOR, J. and MOORE, J., On the structure of Hopf algebras, Ann. Math., 81, 1965 211–264.MathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    MING, R., Yoneda Products in the Cartan-Eilenberg change of rings spectral sequence with applications to BP*(BO(n)), Trans. Amer. Math. Soc., 219, 1976, 235–252.MathSciNetzbMATHGoogle Scholar
  22. [22]
    MOORE, J.C. and SMITH, L, Hopf algebras and multiplicative fibrations I-II, Amer. J. Math., 90, 1968, 752–780 and 1113–1150.MathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    ROOS, J.-E., Sur l'algèbre Ext de Yoneda d'un anneau local de Golod, Comptes rendus Acad. Sc. Paris, 286, série A, 1978, 9–12.zbMATHGoogle Scholar
  24. [24]
    ROOS, J.-E., Relations between the Poincaré-Betti series of loop spaces and local rings, Lecture Notes in Mathematics, 740, 1979, 285–322, Springer-Verlag, Berlin, Heidelberg, New York.Google Scholar
  25. [25]
    ROOS, J.-E., On the use of graded Lie algebras in the theory of local rings, London Math. Soc. Lecture Notes Series, 72, 1982, 204–230, Cambridge University Press, Cambridge.Google Scholar
  26. [26]
    Séminaire H. CARTAN, 11e année 1958/59, Invariant de Hopf et opérations cohomologiques sécondaires, Paris, Secr. Math., 11 rue Pierre Curie, Paris 5, 1959. (Has also been published by Benjamin, New York.)Google Scholar
  27. [27]
    SJÖDIN, G., A set of generators for ExtR(k,k), Math. Scand. 38, 1976, 1–12.Google Scholar
  28. [28]
    STANLEY, R.P., Combinatorics and Commutative Algebra, Progress in Mathematics, vol. 41, 1983, Birkhäuser, Boston, Basel, Stuttgart.Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • Jörgen Backelin
    • 1
  • Jan-Erik Roos
    • 1
  1. 1.Department of MathematicsUniversity of StockholmStockholmSweden

Personalised recommendations