Skip to main content

Conformal orbits of electromagnetic Riemannian curvature tensors electromagnetic implies gravitational radiation

  • Conference paper
  • First Online:
  • 667 Accesses

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 1156))

Abstract

Electromagnetic curvature structures (c.s.) are defined as being bilinear in the two electromagnetic field matrices and electrovac c.s. by having the el.magn. energy-momentum as Einstein tensor. There is a one-parameter familiy of electrovac c.s. having never a component in the space of constant curvatures. Their non-Weyl component is uniquely determined by the el.magn. energy-momentum, and in general they have a Weyl component. It is shown that el.magn. implies gravitational radiation, and coversely that el.magn. gravitational radiation is induced by el.magn. radiation. A structure theory of c.s. is described with morphisms as linear conformal transformations (i.e. Lorentztransformations and dilatations) such that the above properties of c.s., and many others, are orbit properties.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   34.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   46.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C.D. Collinson, R. Shaw, The Rainich Conditions for Neutrino Fields, Int.J.Theor.Phys. 6, 347–357 (1972)

    Article  Google Scholar 

  2. T. Frankel, Gravitational Curvature, Freeman & Co, San Francisco (1979)

    MATH  Google Scholar 

  3. R. Geroch, Building things in general relativity, Gen.Rel.Grav. 13, 37–41 (1981)

    MATH  Google Scholar 

  4. A. Gray, Invariants of Curvature Operators in Four-Dimensional Riemannian Manifolds, in Proceedings of the 13th Biennial Seminar of the Canadian Mathematical Congress, Halifax (1971)

    Google Scholar 

  5. W.H. Greub, Linear Algebra, Springer-Verlag, Berlin (1967)

    Book  MATH  Google Scholar 

  6. P. Jordan, S. Matsushita, Zur Theorie der Lie-Tripel-Algebren, Akad.Wiss. Mainz, Abh. math.naturwissenschaftlicher Klasse 1,123–134 (1967)

    MathSciNet  MATH  Google Scholar 

  7. P. Jordan, J. Ehlers, W. Kundt, Strenge Lösungen der Feldgleichungen der allgemeinen Relativitätstheorie, Akad.Wiss.Mainz, Abh. math. naturwissenschaftlicher Klasse 2, 1–85 (1960)

    MathSciNet  MATH  Google Scholar 

  8. P. Jordan, J. Ehlers, K. Sachs, Beiträge zur Theorie der reinen Gravitationsstrahlung. Strenge Lösungen der Feldgleichungen der allgemeinen Relativitätstheorie, Akad.Wiss.Mainz, Abh. math. naturwissenschaftlicher Klasse 1, 1–62 (1961)

    MathSciNet  MATH  Google Scholar 

  9. O. Kowalski, Partial Curvature Structures and Conformal Transformations, Jour.Diff.Geom. 8, 53–70 (1973)

    MATH  Google Scholar 

  10. D. Kramer, H. Stephani, M. MacCallum, E. Herlt, Exact Solutions of Einstein's Field equations, Cambridge Univ. Press, Cambridge (1980)

    MATH  Google Scholar 

  11. R.S. Kulkarni, Curvature and Metric, Ann.Math. 91, 311–331 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  12. R.S. Kulkarni, Curvature Structures and Conformal Transformations, Jour. Diff.Geom. 4, 53–70 (1970)

    MathSciNet  MATH  Google Scholar 

  13. A. Lichnerowicz, Ondes et radiations électromagnetiques et gravitationelles en relativité générale, Annali di Mathematica Pura e. Applica 4, 1–95 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  14. W.G. Lister, A structure Theory of Lie Triples, Trans.Am.Math.Soc. 72, 217–242 (1972)

    Article  MathSciNet  Google Scholar 

  15. O. Loos, Symmetric Spaces I,II, Benjamin, N.Y. (1969)

    MATH  Google Scholar 

  16. G. Ludwig, Geometricdynamics of Electromagnetic Fields in the Newman-Penrose Formalism, Commun.math.Phys. 17, 98–108 (1970)

    Article  MathSciNet  Google Scholar 

  17. C.W. Misner, K.S. Thorne, J.A. Wheeler, Gravitation, Freeman and Co., San Francisco (1971)

    Google Scholar 

  18. K. Nomizu, Invariant Affine Connections on Homogeneous Spaces, Am.Jour. Math. 76, 33–65 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  19. K. Nomizu, The Decomposition of Generalized Curvature Tensor Fields, in Differential Geometry, Papers in Honour of K. Yano, Kinukuniya, Tokyo, 335–345 (1972)

    Google Scholar 

  20. K. Nomizu, K. Yano, Some results related to the equivalence problem in Riemannian Geometry, in Proc. of the US-Japan Seminar in Differential Geometry, Kyoto, Japan, 95–100 (1965)

    Google Scholar 

  21. G.Y. Rainich, Electrodynamics in the General Relativity Theory, Trans. Am. Math.Soc. 27, 106–136 (1925)

    Article  MathSciNet  MATH  Google Scholar 

  22. R.K. Sachs, H. Wu, General Relativity for Mathematicians, Springer-Verlag, Berlin (1977)

    Book  MATH  Google Scholar 

  23. I.E. Segal, Mathematical Cosmology and Extra-Galactic Astronomy, Academic Press, N.Y (1977)

    Google Scholar 

  24. I.M. Singer, J.A. Thorpe, The Curvature of 4-Dimensional Einstein Spaces, in Papers in honou of K. Kodaira, Princeton Univ. Press, Princeton (1968)

    Google Scholar 

  25. F. Söler, r-Manifolds and Gravitational Radiation, Gen.Rel.Grav. 13, 37–41 (1981)

    MathSciNet  Google Scholar 

  26. A. Stehney, Principal Null Directions without Spinors, Jour.Math.Phys. 17, 1793–1796

    Google Scholar 

  27. J.A. Thorpe, Curvature and the the Petrov Canonical Forms, Jour.Math.Phys. 10, 1–6 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  28. H. Tilgner, The Group Structure of Pseudo-Riemannian Curvature Spaces, Jour.Math.Phys. 19, 1118–1125 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  29. S. Weinberg, Gravitation and Cosmology, Wiley, N.Y. (1972)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Dirk Ferus Robert B. Gardner Sigurdur Helgason Udo Simon

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag

About this paper

Cite this paper

Tilgner, H. (1985). Conformal orbits of electromagnetic Riemannian curvature tensors electromagnetic implies gravitational radiation. In: Ferus, D., Gardner, R.B., Helgason, S., Simon, U. (eds) Global Differential Geometry and Global Analysis 1984. Lecture Notes in Mathematics, vol 1156. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0075101

Download citation

  • DOI: https://doi.org/10.1007/BFb0075101

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-15994-0

  • Online ISBN: 978-3-540-39698-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics