Horizontal lifts of isometric immersions into the bundle space of a pseudo-Riemannian submersion

  • Helmut Reckziegel
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1156)


Fundamental Form Isometric Immersion Integral Manifold Sasakian Manifold Riemannian Submersion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [B]
    Bourbaki, N.: Variétés différentielles et analytiques, Fascicule de resultats. Paris: Hermann 1971zbMATHGoogle Scholar
  2. [B1]
    Blair, D.E.: Contact manifolds in Riemannian geometry. Lecture Notes in Mathematics, Vol. 509; Berlin, Heidelberg, New York: Springer(1976; Zbl. 319.53026).zbMATHGoogle Scholar
  3. [BR]
    Backes, E., Reckziegel, H.: On symmetric submanifolds of spaces of constant curvature. Math.Ann.263,419–433(1983; Zbl. 499.53045).MathSciNetCrossRefzbMATHGoogle Scholar
  4. [C]
    Chen, B.Y.: Geometry of submanifolds. New York: Marcel Decker (1973; Zbl. 262.53036).zbMATHGoogle Scholar
  5. [CH]
    Chen, B.Y., Houh, C.S.: Totally real submanifolds of a quaternion projective space. Ann.di Mat.(IV)120,185–199(1979; Zbl. 413.53031).MathSciNetCrossRefzbMATHGoogle Scholar
  6. [CO]
    Chen, B.Y., Ogiue, K.: On totally real submanifolds. Trans.of Amer.Math.Soc.193,257–266(1974; Zbl. 286.53019).MathSciNetCrossRefzbMATHGoogle Scholar
  7. [D]
    Dieudonné, J.: Treatise on analysis, Vol. IV. New York,London: Academic Press (1974; Zbl. 292.58001).zbMATHGoogle Scholar
  8. [E]
    Ehresmann,C.: Les connexions infinitésimales dans un espace fibré différentiable. Colloque de Topologie, Bruxelles 1950, 29–55Google Scholar
  9. [F]
    Ferus, D.: Symmetric submanifolds of euclidean space. Math. Ann.247,81–93(1980; Zbl. 446.53041).MathSciNetCrossRefzbMATHGoogle Scholar
  10. [H]
    Hermann, R.: A sufficient condition that a mapping of Riemannian manifolds be a fibre bundle. Proc.Amer.Math.Soc.11,236–242 (1960; Zbl. 112,137).MathSciNetCrossRefzbMATHGoogle Scholar
  11. [I1]
    Ishihara, S.: Quaternion Kählerian manifolds and fibred Riemannian spaces with Sasakian 3-structure. Kōdai Math.Sem. Rep.25,321–329(1973; Zbl. 267.53023).MathSciNetCrossRefzbMATHGoogle Scholar
  12. [I2]
    Ishihara, S.: Quaternion Kählerian manifolds. J.Diff.Geometry 9,483–500(1974; Zbl. 297.53014).MathSciNetzbMATHGoogle Scholar
  13. [KN]
    Kobayashi, S., Nomizu, K.: Foundations of differential geometry, Vol. I. New York: Interscience Publishers 1963zbMATHGoogle Scholar
  14. [L]
    Lawson, H.B.: Rigidity theorems in rank-1 symmetric spaces. J.Diff.Geometry 4,349–357(1970; Zbl. 199,564).MathSciNetzbMATHGoogle Scholar
  15. [M]
    Morimoto, A.: On normal almost contact structures with a regularity. Tôhoku Math.J.16,90–104(1964; Zbl. 135,221).MathSciNetCrossRefzbMATHGoogle Scholar
  16. [N]
    Naitoh, H.: Parallel submanifolds of complex space forms. Nagoya Math.J.90,85–117(1983) and 91,119–149(1983; Zbl. 502.53044/5).MathSciNetzbMATHGoogle Scholar
  17. [O1]
    O'Neill, B.: The fundamental equations of a submersion. Michigan Math.J.13,459–469(1966; Zbl. 145,186).MathSciNetCrossRefzbMATHGoogle Scholar
  18. [O2]
    O'Neill, B.: Semi-Riemannian geometry. New York: Academic Press (1983; Zbl. 531.53051).zbMATHGoogle Scholar
  19. [W]
    Wu, H.: On the de Rham decomposition theorem. Illinois J.Math. 8,291–311(1964; Zbl. 122,400).MathSciNetzbMATHGoogle Scholar
  20. [YK]
    Yano, K. Kon, M.: Anti-invariant submanifolds. New York: Marcel Decker (1976; Zbl. 349.53055).zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • Helmut Reckziegel
    • 1
  1. 1.Mathematisches Institut der UniversitätKöln 41Fed. Rep. of Germany

Personalised recommendations