Advertisement

Small eigenvalues of the Laplacian and examples

  • Targo Pavlista
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1156)

Keywords

Riemannian Manifold Gaussian Curvature Integral Formula Small Eigenvalue Minimal Immersion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    K. Benko, M. Kothe, K. D. Semmler, U. Simon: Eigenvalues of the Laplacian and curvature. Colloquium math. 42, 19–31 (1979; Zbl. 437.53032).MathSciNetzbMATHGoogle Scholar
  2. [2]
    M. Berger, P. Gauduchon, E. Mazet: Le spectre d'une variété Riemannienne. Lecture Notes in Math., Vol. 194, Berlin-Heidelberg-New-York: Springer-Verlag 1971.CrossRefzbMATHGoogle Scholar
  3. [3]
    J. Hersch: Quatre propiétés isopérimétriques de membranes sphériques homogenes, C. R. Acad, Sci. Paris, Ser. A 270, 1645–1648 (1970; Zbl. 224.73083).MathSciNetzbMATHGoogle Scholar
  4. [4]
    S. Kobayashi, K. Nomizu: Foundations of differential geometry Vol. I, Interscience Publishers New York, London 1963.zbMATHGoogle Scholar
  5. [5]
    M. Kozlowski: Geometrische Abschätzungen für kleine Eigenwerte des Laplaceoperators auf fast-sphärischen Rotationsellipsoiden. Dissertation FB 3 TU Berlin 1983.Google Scholar
  6. [6]
    M. Kozlowski, U. Simon: Minimal immersions of 2-manifolds into spheres. Math. Z. 186, 377–382 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    T. Pavlista: Geometrische Abschätzungen kleiner Eigenwerte des Laplaceoperators. Dissertation FB 3 TU Berlin 1984.Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • Targo Pavlista

There are no affiliations available

Personalised recommendations