Advertisement

On the number of tritangencies of a surface in IR3

  • Tetsuya Ozawa
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1156)

Keywords

Quotient Space Closed Surface Euler Number Small Sphere Klein Bottle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    V.I. Arnold; Normal Forms for Functions near Degenerate Critical points, the Weyl Groups of Ak, Dk, Ek and Lagrangian Singularities, Functional Anal. Appl. 6, 254–272 (1972; Zbl. 278.57011).CrossRefGoogle Scholar
  2. [2]
    Y.L. Kergosien and R. Thom; Sur les Points Paraboliques des Surfaces, C.R. Acad. Sc. Paris t. 290 Sèrie A, 705–710 (1980; Zbl.435.58005).MathSciNetzbMATHGoogle Scholar
  3. [3]
    T.F. Banchoff, T. Gaffney and C. McCrory; Cusps of Gauss Mappings, Pitman. Per. Notes Math.55 (1982;Zbl. 478.53002).Google Scholar
  4. [4]
    D. Bleecker and L.C. Wilson; Stability of Gauss Maps, Illinois J. Math. 22, 279–289 (1978; Zbl. 382.58004).MathSciNetzbMATHGoogle Scholar
  5. [5]
    F. Sergeraert; Un théorème de fonctions implicites sur certains espaces de Frechet et quelques applications, Ann. Scient. Ec. Norm. Sup. 4eserie t.5, 599–660 (1972;Zbl. 246.58006).MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • Tetsuya Ozawa
    • 1
  1. 1.Department of Mathematics Faculty of ScienceNagoya UniversityNagoyaJapan

Personalised recommendations