Advertisement

Tight smoothing of some polyhedral surfaces

  • W. Kühnel
  • U. Pinkall
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1156)

Keywords

Gaussian Curvature Molding Surface Polyhedral Surface Threefold Symmetry Vertex Cone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Apery, La surface de BOY, Thèse Univ. Louis Pasteur, Strasbourg 1984Google Scholar
  2. 2.
    T. F. Banchoff, Tightly embedded 2-dimensional polyhedral manifolds, Amer. J. of Math. 87, 462–472 (1965;Zbl. 136,210).MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    —, Critical points and curvature for embedded polyhedral surfaces, Amer. Math. Monthly 77, 475–485 (1970; Zbl. 191,528).MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    —, Non-rigidity theorems for tight polyhedra, Arch. Math. 21, 416–423 (1970; Zbl. 216,188).MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    T. F. Banchoff and N. H. Kuiper, Geometrical class and degree for surfaces in three-space, J. Diff. Geom. 16, 559–576 (1981; Zbl. 496.53003).MathSciNetzbMATHGoogle Scholar
  6. 6.
    W. Blaschke und K. Leichtweiβ, Elementare Differentialgeometrie, Springer 1973 (Grundlehren der mathematischen Wissenschaften Band 1) (1973; Zbl. 264.53001).Google Scholar
  7. 7.
    U. Brehm and W. Kühnel, Smooth approximation of polyhedral surfaces regarding curvatures, Geometriae Dedicata 12, 435–461 (1982), short version in: Proc. Conf. Global Diff. Geom. and Global Analysis, Berlin 1979, 64–68 (1981) (Lecture Notes in Mathematics Vol. 838)(Zbl. 437.53040 and 483.53046).MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    A. Császár, A polyhedron without diagonals, Acta Sci. Math. Szeged 13, 140–142 (1949; Zbl. 38,307).MathSciNetzbMATHGoogle Scholar
  9. 9.
    N. H. Kuiper, Convex immersions of closed surfaces in E3, Comment. Math. Helv. 35, 85–92 (1961; Zbl. 243.53043).MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Tight topological embeddings of the Moebius band, J. Diff. Geom. 6, 271–283 (1972; Zbl. 234.53048).MathSciNetzbMATHGoogle Scholar
  11. 11.
    — Tight embeddings and maps, Submanifolds of geometrical class three in EN, Proc. Chern Symp. Berkeley 1979, 97–145, Springer (1980; Zbl. 461.53033).Google Scholar
  12. 12.
    Geometry in total absolute curvature theory, in: Perspectives in Mathematics, Anniversary of Oberwolfach, 377–392, Birkhäuser 1984 Google Scholar
  13. 13.
    U. Pinkall, Regular homotopy classes of tight surfaces (in preparation)Google Scholar
  14. 14.
    J. M. Wills, Reguläre polyedrische Mannigfaltigkeiten, Mitteilungen Math. Ges. Hamburg 11, 171–177 (1983).MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • W. Kühnel
    • 1
  • U. Pinkall
    • 2
  1. 1.Fachbereich Mathematik der TU BerlinBerlin 12
  2. 2.Max-Planck-Institut für MathematikBonn 3

Personalised recommendations