Riemannian manifolds with harmonic curvature

  • Andrzej Drdziński
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1156)


Riemannian Manifold Compact Manifold Weyl Tensor Compact Surface Compact Riemannian Manifold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aronszajn, N.: A unique continuation theorem for solutions of elliptic partial differential equations or inequalities of second order. J. Math. Pures Appl. 36, 235–249 (1957) (Zbl. 84.304)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Atiyah, M.F., Hitchin, N.J., Singer, I.M.: Self-duality in four-dimensional Riemannian geometry. Proc. Roy. Soc. London A362, 425–461 (1978) (Zbl. 389.53011)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Berger, M.S.: Nonlinearity and Functional Analysis, Academic Press, 1977 (Zbl.368.47001)Google Scholar
  4. 4.
    Berger, M., Ebin, D.: Some decompositions of the space of symmetric tensors on a Riemannian manifold. J. Differential Geometry 3, 379–392 (1969) (Zbl. 194,531)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Besse, A.L.: Einstein Manifolds (to appear)Google Scholar
  6. 6.
    Bourguignon, J.P.: Les variétés de dimension 4 à signature non nulle dont la courbure est harmonique sont d'Einstein. Invent. Math. 63, 263–286 (1981) (Zbl. 456.53033)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bourguignon, J.P.: Metrics with harmonic curvature. Global Riemannian Geometry (edited by T.J. Willmore and N.J. Hitchin), 18–26. Ellis Horwood, 1984Google Scholar
  8. 8.
    Bourguignon, J.P., Lawson, H.B.,Jr.: Yang-Mills theory: Its physical origins and differential geometric aspects. Seminar on Differential Geometry (edited by S.T. Yau), Ann. of Math. Studies No. 102, 395–421 (1982) (Zbl. 482.58007)Google Scholar
  9. 9.
    Derdziński, A.: On compact Riemannian manifolds with harmonic curvature. Math. Ann. 259, 145–152 (1982) (Zbl. 489.53042)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Derdziński, A.: Self-dual Kähler manifolds and Einstein manifolds of dimension four. Compos. Math. 49, 405–433 (1983) (Zbl. 527.53030)zbMATHGoogle Scholar
  11. 11.
    Derdziński, A.: Preliminary notes on compact four-dimensional Riemannian manifolds with harmonic curvature, 1983 (unpublished)Google Scholar
  12. 12.
    Derdziński, A.: An easy construction of new compact Riemannian manifolds with harmonic curvature (preliminary report). SFB/MPI 83–21, Bonn (1983)Google Scholar
  13. 13.
    Derdziński, A., Shen, C.L.: Codzzi tensor fields, curvature and Pontryagin forms. Proc. London Math. Soc. 47, 15–26 (1983) (Zbl. 519.53015)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    DeTurck, D.: private communicationGoogle Scholar
  15. 15.
    Ebin, D.G.: The manifold of Riemannian metrics. Proc. of Symposia in Pure Math. 15, 11–40 (1970) (Zbl. 205,537) (Zbl. 135,225)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Hicks, N.: Linear perturbations of connexions. Michigan Math. J. 12, 389–397 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Lafontaine, J.: Remarques sur les variétés conformément plates. Math. Ann. 259, 313–319 (1982) (Zbl. 469.53036)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Matsushima, Y.: Remarks on Kähler-Einstein manifolds. Nagoya Math. J. 46, 161–173 (1972) (Zb. 249.53050)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Roter, W.: private communicationGoogle Scholar
  20. 20.
    Schouten, J.A.: Ricci Calculus. Springer-Verlag, 1954Google Scholar
  21. 21.
    Tanno, S.: Curvature tensors and covariant derivatives. Ann. Mat. Pura Appl. 96, 233–241 (1973) (Zbl. 277.53013)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Thorpe, J.: Some remarks on the Gauss-Bonnet integral. J. of Math. Mech. 18 779–786 (1969) (Zbl. 183,505)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • Andrzej Drdziński
    • 1
  1. 1.Universität Bonn and Max-Planck-Institut für Mathematik in BonnGermany

Personalised recommendations