Advertisement

Immersions of surfaces into space forms

  • J. Bolton
  • T. J. Willmore
  • L. M. Woodward
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1156)

Keywords

Vector Bundle Normal Bundle Tensor Field Oriented Surface Curvature Vector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S.S. Chern, "On the minimal immersions of the two sphere in a space of constant curvature", Problems in Analysis, Princeton, N.J., 1970, 27–40.Google Scholar
  2. 2.
    G. Jensen and M. Rigoli, "Minimal surfaces in spheres by the method of moving frames", Seminaire de l'institute É. Cartan (1983), University de Nancy I, Nancy.zbMATHGoogle Scholar
  3. 3.
    G. Jensen and M. Rigoli, "Minimal surfaces in spheres", Preprint.Google Scholar
  4. 4.
    S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Interscience, Vol. II (1969).Google Scholar
  5. 5.
    M. Rigoli, "Surfaces with parallel mean curvature vector in a 4-space form", Preprint.Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • J. Bolton
    • 1
  • T. J. Willmore
    • 1
  • L. M. Woodward
    • 1
  1. 1.Durham UniversityDepartment of Mathematical Sciences Science LaboratoriesDurhamEngland

Personalised recommendations