Advertisement

Symmetric immersions in pseudo-Riemannian space forms

  • Carol Blomstrom
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1156)

Keywords

Fundamental Form Space Form Rigid Motion Isometric Immersion Frenet Frame 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [1]
    Ferus, D.: Produkt-Zerlegung von Immersionen mit paralleler zweiter Fundamentalform. Math. Ann. 211, 1–5 (1974; Zbl. 273. 53044)MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    Ferus, D.: Immersions with parallel second fundamental form. Math. Z. 140, 87–93 (1974; Zbl. 279.53048)MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    Ferus, D.: Symmetric submanifolds of Euclidean space. Math. Ann. 247, 81–93 (1980; Zbl. 446.53041)MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    Helgason, S.: Differential Geometry, Lie Groups, and Symmetric Spaces. Academic Press, New York (1978; Zbl. 451.53038)zbMATHGoogle Scholar
  5. [5]
    Kobayashi, S.: Isometric imbeddings of compact symmetric spaces. Tôhoku Math. J. 20, 21–25 (1968; Zbl. 175,483)MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    Kobayashi, S. and Nagano, T.: On filtered Lie algebras and geometric structures I, II. J. Math. Mech. 13 (1964), 875–908, 14 (1965), 513–522. (Zbl. 142,195 and 163,281)MathSciNetzbMATHGoogle Scholar
  7. [7]
    Koecher, M.: An Elementary Approach to Bounded Symmetric Domains. Rice University, Houston, 1969.zbMATHGoogle Scholar
  8. [8]
    Magid, M.: Isometric immersions between indefinite flat spaces with parallel second fundamental forms. Thesis, Brown University, 1978.Google Scholar
  9. [9]
    Magid, M.: Shape operators of Einstein hypersurfaces in indefinite space forms. Proc. Am. Math. Soc. 84, 237–242 (1982; Zbl. 485.53023)MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    Naitoh, H.: Parallel submanifolds of complex space forms I, II, Nagoya J. Math. 90 (1983), 85–117, 91 (1983), 110–149 (Zbl. 502.53044 and 502.53045)MathSciNetzbMATHGoogle Scholar
  11. [11]
    Naitoh, H.: Pseudo-Riemannian symmetric R-spaces. Osaka J. Math. 21, 733–764 (1984).MathSciNetzbMATHGoogle Scholar
  12. [12]
    Strübing, W.: Symmetric submanifolds of Riemannian manifolds. Math. Ann. 245, 37–44 (Zbl. 424.53025)Google Scholar
  13. [13]
    Szczarba, R.: On existence and rigidity of isometric immersions. Bull. Am. Math. Soc. 75, 783–787 (1969; Zbl. 177,246)MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    Takeuchi, M.: Parallel submanifolds of space forms. Manifolds and Lie Groups: Papers in Honor of Y. Matsushima, Birkhäuser, Basel, 429–447 (1981; Zbl. 481.53047)Google Scholar
  15. [15]
    Takeuchi, M. and Kobayashi, S.: Minimal imbeddings of R-spaces. J. Differ. Geom. 2, 203–215 (1968; Zbl. 165,249)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • Carol Blomstrom
    • 1
  1. 1.Department of MathematicsWellesley CollegeWellesley

Personalised recommendations