Advertisement

A Toponogov splitting theorem for Lorentzian manifolds

  • John K. Beem
  • Paul E. Ehrlich
  • Steen Markvorsen
  • Gregory J. Galloway
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1156)

Keywords

Sectional Curvature Spacelike Hypersurface Cauchy Surface Timelike Vector Nonnegative Curvature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. K. Beem and P. E. Ehrlich, "Constructing maximal geodesics in strongly causal space-times", Math. Proc. Camb. Phil. Soc. 90, 183–190(1981; Zbl. 483.53056).MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    J. K. Beem and P. E. Ehrlich, Global Lorentzian Geometry, Marcel Dekker Pure and Applied Mathematics, Vol. 67, New York (1981; Zbl. 462.53001).Google Scholar
  3. 3.
    H. Busemann, The Geometry of Geodesics, Academic Press, New York (1955; Zbl. 112,370).zbMATHGoogle Scholar
  4. 4.
    E. Calabi, "An extension of E. Hopf's maximum principle with an application to Riemannian geometry", Duke Math. J. 25, 45–56 (1957; Zbl. 79, 118).MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    J. Cheeger and D. Gromoll, "On the structure of complete manifolds of nonnegative curvature", Ann. of Math. 96, 413–443 (1972; Zbl. 246.53049).MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    J. Cheeger and D. Gromoll, "The splitting theorem for manifolds of nonnegative Ricci curvature", J. Diff. Geo. 6, 119–128 (1971; Zbl. 223.53033).MathSciNetzbMATHGoogle Scholar
  7. 7.
    S. Cohn-Vossen, "Totalkrümmung und geodätische Linien auf einfach zusammenhängenden offenen vollständigen Flachenstücken", Mat. Sb. (N.S.) 1, 43, 139–163 (1936; Zb. 14,276).zbMATHGoogle Scholar
  8. 8.
    J.-H. Eschenburg and E. Heintze, "An elementary proof of the Cheeger-Gromoll splitting theorem", (to appear in Ann. of Global Anal. Geom.)Google Scholar
  9. 9.
    J.-H. Eschenburg and J. J. O'Sullivan, "Jacobi tensors and Ricci curvature", Math. Annalen 252, 1–26 (1980; Zbl. 433.53029).MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    G. J. Galloway, "Splitting theorems for spatially closed spacetimes", preprint, 1984.Google Scholar
  11. 11.
    S. G. Harris, A triangle comparison theorem for Lorentz manifolds, Indiana Univ. Math. J. 31, 289–308 (1982); Zbl. 496.53042).MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    S. W. Hawking and G.F.R. Ellis, The Large Scale Structure of Space-time, Cambridge University Press, Cambridge (1973); Zbl. 265.53054).CrossRefzbMATHGoogle Scholar
  13. 13.
    B. O'Neill, Semi-Riemannian Geometry, Academic Press, New York, (1983; Zbl. 531.53051).zbMATHGoogle Scholar
  14. 14.
    V. A. Toponogov, "Riemannian space containing straight lines", Dokl. Akad. Nauk, SSSR 127 (1959) 976–979 (Russian).-Amer. Math. Soc. Transl. (2) 37 (1964) 287–290 (Zbl. 94,347).MathSciNetzbMATHGoogle Scholar
  15. 15.
    V. A. Toponogov, "The metric structure of Riemannian spaces with nonnegative curvature which contain straight lines", Sibirsk. Mat. Z. 5 (1964) 1358–1369 (Russian).-Amer. Math. Soc. Transl. (2) 70 (1968) 225–239 (Zbl. 145,185).MathSciNetGoogle Scholar
  16. 16.
    H. Wu, "An elementary method in the study of nonnegative curvature", Acta Mathematica 142, 57–78 (1979; Zbl. 403.53022).MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    H. Wu, "On the de Rham decomposition theorem", Illinois J. Math. 8, 291–311 (1964; Zbl. 122,400).MathSciNetzbMATHGoogle Scholar
  18. 18.
    S. T. Yau, ed., Seminar on Differential Geometry, Annals of Math. Studies, Princeton Univ. Press, Vol. 102, (1982; Zbl. 479.53001).Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • John K. Beem
    • 1
  • Paul E. Ehrlich
    • 1
  • Steen Markvorsen
    • 1
  • Gregory J. Galloway
    • 2
  1. 1.Mathematics DepartmentUniversity of MissouriColumbia
  2. 2.Mathematics DepartmentUniversity of MiamiCoral Gables

Personalised recommendations