Banach Spaces pp 158-168 | Cite as

Weak*-denting points in duals of operator spaces

  • W. M. Ruess
  • C. P. Stegall
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1166)


We characterize the weak*-denting points in the dual unit balls of the spaces of compact, of weakly compact, and of all bounded linear operators between Banach spaces X and Y in terms of the denting points of the unit ball of X and the weak*-denting points of the dual unit ball of Y.


Banach Space Operator Space Unit Ball Bilinear Form Unit Sphere 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Diestel, J.: Geometry of Banach Spaces — Selected Topics, Lecture Notes Math., Vol. 485; Springer, Berlin, Hdgb., New York, 1975.zbMATHGoogle Scholar
  2. [2]
    Diestel, J., Uhl, J.J.Jr.: Vector Measures, Amer. Math. Soc. Surveys 15, (1977).Google Scholar
  3. [3]
    Giles, J.R.: Convex Analysis with Application in the Differentiation of Convex Functions, Pitman Adv. Publ. Program; Boston, London, Melbourne, 1982.zbMATHGoogle Scholar
  4. [4]
    Giles, J.R., Gregory, D.A., and Sims, B.: Characterization of normed linear spaces with Mazur's intersection property, Bull. Austr. Math. Soc. 18(1978), 105–123.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    Grothendieck, A.: Produits tensoriels topologiques et espaces nucléaires, Amer. Math. Soc. Memoirs 16(1955).Google Scholar
  6. [6]
    Phelps, R.R.: Dentability and Extreme Points in Banach Spaces, J. Funct. Analysis 16(1974), 78–90.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    Ruess, W.M.: [Weakly] Compact Operators and DF Spaces, Pacific J. Math. 98(1982), 419–441.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    Ruess, W.M.: Duality and Geometry of Spaces of Compact Operators, Proc. Paderborn Conf. Funct. Analysis: Surveys and Recent Results III. Eds.: K.-D. Bierstedt and B. Fuchssteiner. North-Holland Math. Studies 90(1984), 59–78.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    Ruess, W.M., Stegall, C.P.: Extreme Points in Duals of Operator Spaces, Math. Ann. 261(1982), 535–546.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    Ruess, W.M., Stegall, C.P.: Exposed and Denting Points in Duals of Operator Spaces, to appear in Israel J. Math.Google Scholar
  11. [11]
    Smul'yan, V.L.: On some geometrical properties of the unit sphere in the space of the type (B), Math. Sbornik N.S. 6(48) (1939), 77–94.MathSciNetGoogle Scholar
  12. [12]
    Smul'yan, V.L.: Sur la dérivabilité de la norme dans l'espace de Banach. Doklady Akad. Nauk SSSR (N.S.) 27(1940), 643–648.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • W. M. Ruess
    • 1
  • C. P. Stegall
    • 1
  1. 1.Department of MathematicsUniversity of EssenEssen 1Fed. Rep. Germany

Personalised recommendations