Banach Spaces pp 106-115 | Cite as

Random subspaces of proportional dimension of finite dimensional normed spaces: Approach through the isoperimetric inequality

  • V. D. Milman
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1166)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [D]
    S.J. Dilworth, The cotype constant and large Euclidean subspaces of normed spaces, Preprint.Google Scholar
  2. [DMT]
    W.J. Davis, V.D. Milman, N. Tomczak-Jaegermann, The distance between certain n-dimensional spaces, Israel J. Math., 39 (1981), 1–15.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [FLM]
    T. Figiel, J. Lindenstrauss, V.D. Milman, The dimension of almost spherical sections of convex bodies, Acta Math. 139 (1977), 53–94.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [FT]
    T. Figiel, N. Tomczak-Jeagermann, Projections onto Hilbertian subspaces of Banach spaces, Israel J. Math. 33 (1979), 155–171.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [K]
    B.S. Kashin, Diameters of some finite dimensional sets and of some classes of smooth functions, IZV. ANSSSR, Ser. Math. 41 (1977), 334–351.Google Scholar
  6. [L]
    D.R. Lewis, Ellipsoids defined by Banach ideal norms, Mathematika, 26 (1979), 18–29.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [M1]
    V.D. Milman, New proof of the theorem of Dvoretzky on sections of convex bodies, Funct. Anal. Appl. 5(1971), 28–37 (Russian); English translationMathSciNetGoogle Scholar
  8. [M2]
    V.D. Milman, Almost Euclidean quotient spaces of subspaces of finite dimensional normed space, Proceedings Amer. Math. Soc., to appear. (1985)Google Scholar
  9. [M3]
    V.D. Milman, Volume Approach and Iteration Procedures in Local Theory of Normed Spaces, this volume.Google Scholar
  10. [MSch]
    V.D. Milman, G. Schechtman, Asymptotic Theory of Finite Dimensional Normed Spaces, Springe Lecture Notes, to appear.Google Scholar
  11. [S]
    S. Szarek, On Kashin almost Euclidean orthogonal decomposition of ℓ1n, Bull. Acad. Polon. Sci. 26 (1978), 691–694.MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • V. D. Milman
    • 1
    • 2
  1. 1.Tel Aviv UniversityIsrael
  2. 2.I.H.E.S.France

Personalised recommendations