A note on toeplitz operators

  • D. Khavinson
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1166)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Alexander, On the area of the spectrum of an element of a uniform algebra, Complex Approximation, Proceedings, Quebec, July 3–8, 1978, ed. by B. Aupetit, Birkhauser (1980), 3–12.Google Scholar
  2. 2.
    H. Alexander, B. A. Taylor, and J. L. Ullman, Areas of projections of analytic sets, Invent. Math. 16 (1972), 335–341.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    S. Axler and J. H. Shapiro, Putnam's Theorem, Alexander's spectral area estimate and VMO, 1983 (preprint).Google Scholar
  4. 4.
    J. Brennan, Invariant subspaces and subnormal operators, Proc. of Symposia in Pure Math., Vol. XXXV, Part 1 (1979), 303–309.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    R. Douglas, Banach algebra techniques in operator theory, Pure and Appl. Mathematics, Vol. 49, Academic Press, 1972.Google Scholar
  6. 6.
    P. Duren, Theory of Hp-spaces, Academic Press, New York, 1970.zbMATHGoogle Scholar
  7. 7.
    T. Gamelin, Uniform algebras, Prentice-Hall, 1969.Google Scholar
  8. 8.
    C. R. Putnam, An inequality for the area of hyponormal spectra, Math. Zeit. 116(1970), 323–330.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    W. Rudin, Functional Analysis, McGraw-Hill, 1973.Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • D. Khavinson
    • 1
  1. 1.Department of Mathematical SciencesUniversity of ArkansasFayetteville

Personalised recommendations