Advertisement

On weakly compact operators on ℓ(k)-spaces

  • Hans Jarchow
  • Urs Matter
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1166)

Keywords

Banach Space Operator Ideal Compact Operator Compact Hausdorff Space Injective Hull 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Beauzamy, B.: Opérateurs uniformément convexifiants. Studia Math. 57 (1976) 103–139.MathSciNetzbMATHGoogle Scholar
  2. [2]
    Delbaen, F.: Weakly compact operators on the disk algebra. Journ. of Algebra 45 (1977) 284–294.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    Diestel,J.; Seifert,C.J.: The Banach-Saks ideal, I. Operators acting on ℓ(Ω). Comment.Math., Tom.spec.hon.L.Orlicz (1979) 109–118 and 343–344.Google Scholar
  4. [4]
    Heinrich,S.: Finite representability and super-ideals of operators. Dissertationses Math. CLXII (1980).Google Scholar
  5. [5]
    Jarchow,H.: Locally Convex Spaces. Stuttgart 1981.Google Scholar
  6. [6]
    Kisliakov, S.V.: On the conditions of Dunford-Pettis, Pełczyński, and Grothendieck. Dokl.Akad.Nauk SSSR 225 (1975) 1252–1255 (Engl. transl. in Soviet Math.Dokl. 16 (1975) 1616–1620).Google Scholar
  7. [7]
    Lindenstrauss,J.; Tzafriri,L.: Classical Banach Spaces I, II, Berlin-Heidelberg-New York 1977, 1979.Google Scholar
  8. [8]
    Matter,U.: Thesis, Universität Zürich (1985).Google Scholar
  9. [9]
    Maurey,B.: Une nouvelle characterization des applications (p,q)-sommantes. École Polytechn. Paris, Sém.Maurey-Schwartz 1973–1974, exp. no. 12.Google Scholar
  10. [10]
    Maurey, B.; Pisier, G.: Séries de variables aléatoires vectorielles indépendentes et propriétés géométriques des espaces de Banach. Studia Math. 58 (1976) 45–90.MathSciNetzbMATHGoogle Scholar
  11. [11]
    Niculescu, C.: Absolute continuity in Banach space theory. Rev.Roum. Pures Appl. 24 (1979) 413–422.MathSciNetzbMATHGoogle Scholar
  12. [12]
    Pełczyński, A.: Banach spaces on which every unconditionally converging operator is weakly compact. Bull.Acad.Polon.Sci., Sér.Sci.Math.Astron.Phys., 10 (1962) 641–648.MathSciNetzbMATHGoogle Scholar
  13. [13]
    _____: On strictly singular and strictly cosingular operators. Bull.Acad.Polon.Sci., Sér.Sci.Math.Astron.Phys., 13 (1965) 31–36 and 37–41.zbMATHGoogle Scholar
  14. [14]
    _____: A characterization of Hilbert-Schmidt operators. Studia Math. 28 (1966/67) 355–360.MathSciNetzbMATHGoogle Scholar
  15. [15]
    _____: Sur certaines propriétés isomorphiques nouvelles des espaces de Banach de fonctions holomorphes A et H. C.R.Acad.Sci. Paris A 279 (1974) 9–12.zbMATHGoogle Scholar
  16. [16]
    Pietsch,A.: Operator ideals. Berlin 1978; Amsterdam-Oxford-New York 1980.Google Scholar
  17. [17]
    Rosenthal, H.P.: A characterization of Banach spaces containing ℓ1. Proc.Nat.Acad.Sci. USA 71 (1974) 2411–2413.MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    _____: Some applications of p-summing operators to Banach space theory. Studia Math. 58 (1976) 21–43.MathSciNetzbMATHGoogle Scholar
  19. [19]
    Szlenk, W.: Sur les suites faiblement convergentes dans l'espace L. Studia Math. 25 (1965) 337–341.MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • Hans Jarchow
    • 1
  • Urs Matter
    • 1
  1. 1.Institut für Angewandte MathematikUniversität ZürichZürichSwitzerland

Personalised recommendations