Advertisement

Characterization of weak compactness in function spaces by means of uniform convergence of extended operators

  • Nicolae Dinculeanu
Conference paper
  • 276 Downloads
Part of the Lecture Notes in Mathematics book series (LNM, volume 1166)

Keywords

Compact Group Uniform Convergence Conditional Expectation Continuous Linear Operator Converse Implication 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. 1.
    J. Batt, On weak compactness in spaces of vector valued measures and Bochner integrable functions in connection with the Randon Nikodym property of Banach spaces, Revue Roumaine Math. Pures et Appl. 19 (1974), 285–304.MathSciNetzbMATHGoogle Scholar
  2. 2.
    J. Batt and N. Dinculeanu, On the weak compactness criteria of Kolmogorov-Tamarkin and M. Riesz type in the space of Bochner integrable functions over a locally compact group, Measure Theory and Applications, Proceedings, Sherbrook-Canada; Springer Lecture Notes 1033 (1983), 43–58.MathSciNetzbMATHGoogle Scholar
  3. 3.
    J. Bourgain, An averaging result for l 1-sequences and applications to conditionally weakly compact sets in LX1, Israel J. Math. 32 (1979), 289–298.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    J.K. Brooks and N. Dinculeanu, Weak Compactness in spaces of Bochner integrable functions and applications, Advances in Math 24 (1977), 172–188.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    _____, Conditional expectations and weak and strong compactness in spaces of Bochner integrable functions, J. Multivariate Analysis, 9 (1979), 420–427.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    N. Dinculeanu, Uniform σ-additivity and uniform convergence of conditional expectations in the space of Bochner or Pettis integrable functions, General Toplogy and Modern Analysis, Academic Press (1981), 391–397.Google Scholar
  7. 7.
    _____, On Kolmogorov-Tamarkin and M. Riesz compactness criteria in function spaces over a locally compact group, J. Math. Analysis and Appl. 89 (1982), 67–85.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    _____, Uniform σ-additivity in spaces of Bochner or Pettis integrable functions over a locally compact group, Proc. Amer. Math. Soc. 87 (1983), 627–633.MathSciNetzbMATHGoogle Scholar
  9. 9.
    _____, Weak compactness and uniform convergence of operators in spaces of Bochner integrable functions, J. Math. Analysis and Appl. (to appear).Google Scholar
  10. 10.
    N. Dinculeanu and C. Ionescu Tulcea, Extensions of certain operators to spaces of abstract integrable functions, Rendiconti del Circolo Mat. Palermo, 31 (1982), 433–448.MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    A. Grothendrick, Sur les applications lineáires faiblement compactes d'espaces du type C(K), Canad. J. Math. 5 (1983), 129–173.CrossRefGoogle Scholar
  12. 12.
    A. and C. Ionescu Tulcea, Topics in the theory of lifting, Springer, (1969).Google Scholar
  13. 13.
    A. Kolmogorov, Ueber die Kompaktheit der Funktionenmengen bei der Konvergenz in Mittel, Nachr. Acad. Wiss. Gőttingen Math.-Phys. Kl. II (1931), 60–63.Google Scholar
  14. 14.
    M. Nicolescu, Analiza Matematica, vol III. Ed. Technica, Bucarest, 1960.Google Scholar
  15. 15.
    M. Riesz, Sur les ensembles compacts de functions sommables, Acta Litt. Sci. Univ. Szeged 6 (1933), 136–142.zbMATHGoogle Scholar
  16. 16.
    J.D. Tamarkin, On the compactness of the space L, Bull. Amer. Math. Soc. 38 (1932), 79–84.MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    A. Weil, L'Intégration dans les groupes topologigues et ses applications, Hermann, Paris, 1953.Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • Nicolae Dinculeanu
    • 1
  1. 1.Department of MathematicsUniversity of FloridaGainesville

Personalised recommendations