Advertisement

Repartition modulo 1 de f (pn) quand f est une serie entiere

Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 475)

Résumé

Soit (Pn) n≥1 la suite croissante des nombres premiers. Si f est une fonction entière, non réduite à un polynôme, réelle sur l’axe réelle et qui satisfait une condition de croissance (1–1) alors la suite (f(Pn))n≥1 est équirépartie modulo 1.

Keywords

Nous Avons Nous Obtenons Nous Supposons Nous Utiliserons Nous Montrerons 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. [1]
    T. Estermann. Introduction to modern prime number theory. Cambridge 1952.Google Scholar
  2. [2]
    G.H. Hardy and E.M. Wright. An introduction to the theory of numbers. Oxford 1968.Google Scholar
  3. [3]
    L.K. Hua. Additive theory of prime numbers. Translations of Mathematical Monographs 13. 1965.Google Scholar
  4. [4]
    M. Mendès-France. Les suites à spectre vide et la répartition modulo 1. Journal of Number Theory 5 (1973) 1–15.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    G. Rauzy. Fonctions entières et répartition modulo un. II Bulletin Soc. Math. France 101. 1973 p. 185–192.MathSciNetzbMATHGoogle Scholar
  6. [6]
    G. Rhin. Sur la répartition modulo 1 des suites f(p). Acta Arithmetica XXIII (1973) p. 217–248.MathSciNetzbMATHGoogle Scholar
  7. [7]
    I.M. Vinogradov. The method of trigonometrical sums in the theory of numbers (Translated from Russian). London 1954.Google Scholar
  8. [8]
    A. Weil. On some exponential sums. Proc. Nat. Acad. Sc., Washington 34.5 (1948) p. 204–207.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    B.M. Wilson. Proofs of some formulae enunciated by Ramanujan. Proc. London. Math. Soc. 221 (1921) p. 235–255.MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • G. Rhin
    • 1
  1. 1.Département de MathématiquesUniversité de MetzMetz

Personalised recommendations