Advertisement

Universal Fourier expansions of modular forms

  • Loïc Merel
Chapter
Part of the Lecture Notes in Mathematics book series (LNM, volume 1585)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Gross B., Zagier D. Heegner points and derivatives of L-series. Inv. Math., 84:225–320, 1986.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    Heilbronn H. On the average length of a class of continued fractions. In Paul Turan, editor, Abhandlungen aus Zahlentheorie und analysis zur Errinerung an Edmund Landau, pages 88–96. VEB Deutscher Verlag der Wissenschaften, Berlin, 1969.Google Scholar
  3. [3]
    Lang S.Introduction to modular forms. Number 222 in Grundlehren der Mathematischen Wissenschaften. Springer Verlag, 1976.Google Scholar
  4. [4]
    Manin Y. Parabolic points and zeta function of modular curves. Math. USSR Izvestija 6 (1): 19–64, 1972.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    Manin Y. Explicit formulas for the eigenvalues of Hecke operators. Acta arithmetica, XXIV:?, 1973.Google Scholar
  6. [6]
    Manin Y. Periods of parabolic forms and p-adic Hecke series. Math. USSR Sbornik, 21:371–393, 1973.CrossRefzbMATHGoogle Scholar
  7. [7]
    Merel L. Opérateurs de Hecke et sous-groupes de Γ(2). Journal of Number theory. To appear, (=Thèse, chapitre 5).Google Scholar
  8. [8]
    Merel L. Opérateurs de Hecke pour Γ0(N) et fractions continues. Ann. Inst. Fourier, 41(3), 1991. (=thèse, chapitre 2).Google Scholar
  9. [9]
    Merel L. Homologie des courbes modulaires affines et paramétrisations de Weil. 1992. To appear, (=Thèse, chapitre 3).Google Scholar
  10. [10]
    Serre J-P. Cours d'arithmétique. Presses Universitaires de France, 1970.Google Scholar
  11. [11]
    Shokurov V. Holomorphic differential forms of higher degree on Kuga's modular varieties. Math. USSR Sbornik, 30 (1): 119–142, 1976.CrossRefGoogle Scholar
  12. [12]
    Shokurov V. Modular symbols of arbitrary weight. Functional analysis and its applications, 10 (1): 85–86, 1976.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    Shokurov V. Shimura integrals of cusp forms. Math. USSR Isvestija, 16 (3): 603–646, 1981.MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    Shokurov V. The study of the homology of Kuga varieties. Math. USSR Isvestija, 16 (2): 399–418, 1981.CrossRefzbMATHGoogle Scholar
  15. [15]
    Wang X. This volume.Google Scholar
  16. [16]
    Zagier D. Hecke operators and periods of modular forms. Israel Mathematical Conference Proceedings, 3:321–336, 1990.MathSciNetzbMATHGoogle Scholar
  17. [17]
    Zagier D. Periods of modular forms and jacobi theta functions. Invent. Math., 104(3): 449–465, 1991. *** DIRECT SUPPORT *** A00I6B42 00003MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • Loïc Merel

There are no affiliations available

Personalised recommendations