A. Geometrical construction of 2-dimensional galois representations of A5-type. B. On the realisation of the groups PSL2(1) as galois groups over number fields by means of l-torsion points of elliptic curves

  • Martin Kinzelbach
Part of the Lecture Notes in Mathematics book series (LNM, volume 1585)


Let k be a number field which contains the fifth roots of unity and K/k an A5-extension. According to Klein and Serre K/k can be described by adjunction of the 5-torsion points of a suitable elliptic curve E. It is well known that there exists such a curve E defined over k if and only if there exists a quadratic overfield M of K such that M is Galois over k with group <5. This corresponds to a 2-dimensional Galois representation of the Galois group G(k) of k with trivial determinant.

In general there exists a curve E defined over a quadratic extension of k. We show that if there exists an overfield N of K such that N is Galois over k with group <2 (corresponding to a 2-dimensional Galois representation of G(k) with determinant of order 2), and if N is not of a special exceptional type, then there exists a curve D of genus 2 defined over k such that K/k can be described by means of coordinates of 5-torsion points of D.


Exact Sequence Elliptic Curve Elliptic Curf Galois Group Abelian Variety 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Buh] Buhler, J.P., Icosahedral Galois Representations, L.N.M. 654, Springer, Berlin, 1978.zbMATHGoogle Scholar
  2. [F-K] Frey, G., Kani, E., Curves of Genus 2 covering elliptic curves and an arithmetical application, in: v.d. Geer, G., Oort, F., Steenbrink, J., Arithmetic Algebraic Geometry, Progress in Math. 89, Birkhäuser, Boston, 1991.Google Scholar
  3. [Fri] Fricke, R., Lehrbuch der Algebra, Bd. 2, Vieweg, Braunschweig, 1926.zbMATHGoogle Scholar
  4. [Kan] Kani, E., Curves of Genus 2 with Elliptic Differentials and the Height Conjecture for Elliptic Curves, in: Frey, G. (Ed.), Proceedings of the Conference on Number Theory and Arithmetical Geometry, Inst. f. Exp. Math., Essen, 1991.Google Scholar
  5. [Kin] Kinzelbach, M., Konstruktion von zweidimensionalen Galoisdarstel-lungen mit Hilfe von Kurven vom Geschlecht≤2, Dissertation, Univ. Essen, 1993.Google Scholar
  6. [Kle] Klein, F., Vorlesungen über das Ikosaeder und die Auflösung der Gleichungen vom fünften Grade, Teubner, Leipzig, 1884.zbMATHGoogle Scholar
  7. [La 1] Lang, S., Abelian Varieties, Springer, New York, 1983.CrossRefzbMATHGoogle Scholar
  8. [La 2] Lang, S., Elliptic Functions, G.T.M. 112, New York, 1987.Google Scholar
  9. [Sch] Scharlau, W., Quadratic and Hermitian Forms, Grundl. d. math. Wiss. 270, Springer, Berlin, 1985.zbMATHGoogle Scholar
  10. [Se 1] Serre, J.-P., Extension icosaédriques, Séminaire de Théorie des Nombres de Bordeaux 1979/80, Exp. 19 or Ęvres III, 123, pp 550–554.Google Scholar
  11. [Se 2] Serre, J.-P., L'invariant de Witt de la forme Tr(x2), Comm. Math. Hel. 59 (1984), pp 651–676 or Ęvres III,131, pp 675–700.Google Scholar
  12. [Shi] Shih, K., p-Division Points on Certain Elliptic Curves, Composito Mathematica 36/2, (1978), pp. 113–129.MathSciNetzbMATHGoogle Scholar
  13. [Sil] Silverman, J.H., The Arithmetic of Elliptic Curves, G.T.M. 106, Springer, New York, 1986.zbMATHGoogle Scholar
  14. [Slo] Slodowy, P., Das Ikosaeder und die Gleichungen fünften Grades, in: Mathematische Miniaturen 3, Birkhäuser, Basel, 1986.Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • Martin Kinzelbach
    • 1
  1. 1.Institut für Experimentelle MathematikUniversität GH EssenEssenGermany

Personalised recommendations