Advertisement

On the experimental verification of the artin conjecture for 2-dimensional odd galois representations over Q liftings of 2-dimensional projective galois representations over Q

  • Ian Kiming
Chapter
Part of the Lecture Notes in Mathematics book series (LNM, volume 1585)

Keywords

Prime Number Modular Form Galois Group Galois Representation Galois Extension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A.O.L. Atkin, J. Lehner: Hecke operators on Γ0(m). Math. Ann. 185 (1970), pp. 134–160.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    P. Bayer, G. Frey: Galois representations of octahedral type and 2-coverings of elliptic curves. Math. Z. 207 (1991), pp. 395–408.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    J.P. Buhler: Icosahedral Galois representations. Lecture Notes in Mathematics 654, Springer Verlag, 1978.Google Scholar
  4. [4]
    P. Deligne, J.-P. Serre: Formes modulaires de poids 1. Ann. Sci. Ec. Norm. Sup. 7 (1974), pp. 507–530.MathSciNetzbMATHGoogle Scholar
  5. [5]
    G. Frey: Construction and arithmetical applications of modular forms of low weight. To appear in: CRM Proceedings and Lecture Notes, 1993.Google Scholar
  6. [6]
    H.J. Godwin: On quartic fields of signature one with small discriminant. Quart. J. Math. Oxford (2), 8 (1957), pp. 214–222.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    H. Hasse: Number Theory. Grundlehren der mathematischen Wissenschaften 229, Springer-Verlag, 1980.Google Scholar
  8. [8]
    R.P. Langlands: Base change for GL(2). Annals of Mathematics Studies 96, Princeton University Press, 1980.Google Scholar
  9. [9]
    W. Li: On converse theorems for GL(2) and GL(1). Amer. J. Math. 103, No. 5 (1981), pp. 851–885.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    T. Miyake: Modular Forms. Springer Verlag, 1989.Google Scholar
  11. [11]
    H. Petersson: Modulfunktionen und quadratische Formen. Ergebnisse der Mathematik und ihrer Grenzgebiete 100, Springer Verlag, 1982.Google Scholar
  12. [12]
    J.-P. Serre: Local Fields. Graduate Texts in Mathematics 67, Springer Verlag, 1979.Google Scholar
  13. [13]
    J.-P. Serre: Modular forms of weight one and Galois representations. In: A. Fröhlich: Algebraic Number Fields. Academic Press, 1977.Google Scholar
  14. [14]
    G. Shimura: Introduction to the arithmetic theory of automorphic functions. Princeton University Press, 1971.Google Scholar
  15. [15]
    J. Tunnell: Artin's conjecture for representations of octahedral type. Bull. Amer. Math. Soc., Vol. 5, No. 2 (1981), pp. 173–175.MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    A. Weil: Über die Bestimmung Dirichletscher Reihen durch Funktionalgleichungen. Math. Ann. 168 (1967), pp. 149–156.MathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    A. Weil: Exercices dyadiques. Invent. Math. 27 (1974), pp. 1–22.MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    E.-W. Zink: Ergänzungen zu Weils Exercices dyadiques. Math. Nachr. 92 (1979), pp. 163–183.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • Ian Kiming

There are no affiliations available

Personalised recommendations