Skip to main content

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 1035))

Abstract

We introduce and review a number of topics drawn from the theories of random processes and random systems. In particular we address the following subjects: random walks in continuous spaces and on lattices; continuum limits of random walks and stable distributions; master equations, generalized master equations and continuous-time random walks; self-avoiding walks on lattices; percolation theory; steady-state and transient transport in random lattices; and diffusion and conduction in heterogeneous continua.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References for Part A

  1. K. Pearson, "The problem of the random walk", Nature 72 (1905) 294. In the less abstract half of the random walk literature it has become something of a tradition to commence articles with a direct quote of all or part of this letter, or at least to reproduce it in a footnote. Physicists may be amused to note that on the same page as Pearson's letter, J.H. Jeans argues at some length that Planck's constant h cannot possibly have a non-zero value!

    Article  ADS  MATH  Google Scholar 

  2. Lord Rayleigh, "On the resultant of a large number of vibrations of the same pitch and of arbitrary phase", Phil. Mag. 10 (1880) 73–78, reprinted in Scientific Papers Vol 1, pp. 491–496 (Dover, New York, 1964). Rayleigh's derivation is elementary, but insightful: he analyses first vibrations with random phases 0 or π, then vibrations with phases 0, π/2, π, 3π/2, and then establishes that his conclusions hold more generally. Later ["On James Bernoulli's theorem in probabilities" Phil. Mag. 47 (1889) 246–251, reprinted in Scientific Papers Vol 4, pp. 370–375 (Dover, New York, 1964), and The Theory of Sound, Volume 1, 2nd edition, pp. 35–42 (New York, Dover, 1945)] he obtained the same results by approximating a difference equation describing the process by the diffusion equation.

    Article  Google Scholar 

  3. Lord Rayleigh, "The problem of the random walk", Nature 72 (1905) 318, reprinted in Scientific Papers, Vol 5, p. 256.

    Article  ADS  MATH  Google Scholar 

  4. K. Pearson, "The problem of the random walk", Nature 72 (1905) 342. Pearson concludes that: "the lesson of Lord Rayleigh's solution is that in open country the most probable place to find a drunken man who is at all capable of keeping on his feet is somewhere near his starting point!"

    Article  ADS  MATH  Google Scholar 

  5. J.C. Kluyver, "A local probability problem", Proceedings of the Section of Sciences, Koninklijke Akademie van Wetenschappen te Amsterdam 8 (1906) 341–350 (Amsterdam, Johannes Müller, 1906: cover to cover translation of the original Dutch).

    Google Scholar 

  6. A.A. Markoff, Wahrscheinlichkeitsrechnung pp. 67–76 and pp. 173–177 (Leipzig, B.G. Teubner, 1912: translation from the Russian). Chandrasekhar [17] credits Markoff for the two-dimensional transform solution of Pearson's problem, but the reader will not readily translate Markoff's analysis into the modern approach. Markoff addresses the abstract question of addition of two-dimensional random vectors, with no mention of random walk concepts (and no citation of Pearson, Rayleigh or Kluyver). The problem of addition of random vectors had apparently been considered earlier in papers of Ch.M. Schols cited by Markoff: "Théorie des erreurs dans le plan et dans l'espace", Ann. de l'École polyt. de Delft 2 (1886) and "Démonstration directe de la loi limite pour les erreurs dans le plan et dans l'espace", ibid. 3 (1887).

    Google Scholar 

  7. Lord Rayleigh, "On the problem of random vibrations, and of random flights in one, two, or three dimensions", Phil. Mag. 37 (1919) 321–347; reprinted in Scientific Papers, Vol. 6, p. 604.

    Article  MATH  Google Scholar 

  8. M.N. Barber and B.W. Ninham, Random and Restricted Walks: Theory and Applications (New York, Gordon and Breach, 1970).

    MATH  Google Scholar 

  9. E.W. Montroll and B.J. West, "On an enriched collection of stochastic processes", in Fluctuation Phenomena (ed. E.W. Montroll and J.L. Lebowitz) pp. 61–175 (Amsterdam, North-Holland, 1979).

    Chapter  Google Scholar 

  10. G.H. Weiss and R.J. Rubin, "Random walks: theory and selected applications", Adv. Chem. Phys. 52 (1983) 363–505.

    Google Scholar 

  11. M. von Smoluchowski, "Drei Vorträge über Diffusion, Brownsche Molekularbewegung und Koagulation von Kolloidteilchen, Phys. Zeit. 17 (1916) 557–585; see the footnote to p. 558.

    Google Scholar 

  12. G. Pólya, "Über eine Aufgabe der Wahrscheinlichkeitsrechnung betreffend die Irrfahrt im Straßennetz", Math. Ann. 83 (1921) 149–160.

    Article  MathSciNet  MATH  Google Scholar 

  13. G. Pólya, "Sur la promenade au hasard dans un réseau de rues", Collogue consacré à la Théorie des Probabilités (organized by R. Wavre and M. Fréchet) pp. 25–44 (Paris, Hermann et Cie, 1938).

    Google Scholar 

  14. E. Lukacs, Characteristic Functions, 2nd edition (London, Griffin, 1970).

    MATH  Google Scholar 

  15. G.N. Watson, A Treatise on the Theory of Bessel Functions, 2nd edition pp. 419–421 (Cambridge University Press, 1944).

    Google Scholar 

  16. S. Bochner and K. Chandrasekharan, Fourier Transforms, Chapter 2 (Princeton University Press, 1949).

    Google Scholar 

  17. S. Chandrasekhar, "Stochastic problems in physics and astronomy", Rev. Mod. Phys. 15 (1943) 1–89; reprinted in N. Wax, ed., Selected Papers on Noise and Stochastic Processes (New York, Dover, 1954).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. S.A. Vincenz and J. McG. Bruckshaw, "Note on the probability distribution of a small number of vectors", Proc. Camb. Phil. Soc. 56 (1960) 21–26.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. L.R.G. Treloar, "The statistical length of long-chain molecules", Trans. Faraday Soc. 42 (1946) 77–82.

    Article  MathSciNet  MATH  Google Scholar 

  20. W. Feller, An Introduction to Probability Theory and its Applications, Vol. 2, 2nd edition (New York, Wiley, 1971).

    MATH  Google Scholar 

  21. S. Dvořák, "Treloar's distribution and its numerical implementation", J. Phys. A 5 (1972) 78–84.

    Article  ADS  MATH  Google Scholar 

  22. R. Barakat, "Isotropic random flights", J. Phys. A. 6 (1973) 796–804.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. R. Barakat, "Isotropic random flights: random numbers of flights", J. Phys. A 15 (1982) 3073–3082.

    Article  ADS  MathSciNet  Google Scholar 

  24. R.J. Nossal and G.H. Weiss, "A generalized Pearson random walk allowing for bias", J. Stat. Phys. 10 (1974) 245–253.

    Article  ADS  Google Scholar 

  25. B.D. Hughes, E.W. Montroll and M.F. Shlesinger, "Fractal random walks", J. Stat. Phys. 28, (1982) 111–126.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. F. Spitzer, Principles of Random Walk, 2nd edition (New York, Springer-Verlag, 1976).

    Book  MATH  Google Scholar 

  27. E.W. Montroll, "Random walks in multidimensional spaces, especially on periodic lattices", J. Soc. Indust. Appl. Math. 4 (1956) 241–260.

    Article  MathSciNet  MATH  Google Scholar 

  28. E.W. Montroll, "Random walks on lattices", Proc. Symp. Appl. Math. 16 (1964) 193–220.

    Article  MathSciNet  MATH  Google Scholar 

  29. E.W. Montroll and G.H. Weiss, "Random walks on lattics. II", J. Math. Phys. 6 (1965) 167–181.

    Article  ADS  MathSciNet  Google Scholar 

  30. E.W. Montroll, "Random walks on lattices. III. Calculation of first-passage times with application to exciton trapping on photosynthetic units", J. Math. Phys. 10 (1969) 753–765.

    Article  ADS  Google Scholar 

  31. S. Ishioka and M. Koiwa, "Random walks on diamond and hexagonal close packed lattices", Phil. Mag. A 37 (1978) 517–533.

    Article  ADS  Google Scholar 

  32. M. Koiwa and S. Ishioka, "Random walks on three-dimensional lattices with the coordination number four", Phil. Mag. A. 40 (1979) 625–635.

    Article  ADS  Google Scholar 

  33. F.S. Henyey and V. Seshadri, "On the number of distinct sites visited in 2D lattices", J. Chem. Phys. 76 (1982) 5530–5534.

    Article  ADS  MathSciNet  Google Scholar 

  34. B.D. Hughes and M. Sahimi, "Random walks on the Bethe lattice", J. Stat. Phys. 29 (1982) 787–794. See also P.W. Kasteleyn, "Some aspects of random walks on groups", to be published in Proceedings of the XI International Colloquium on Group Theoretical Methods in Physics (Istanbul, 1982), and S. Sawyer, "Isotropic random walks in a tree", Z. Wahrscheinlichkeitstheorie verw. Gebiete 42 (1978) 279–292.

    Article  ADS  MathSciNet  Google Scholar 

  35. B.D. Hughes, M. Sahimi and H.T. Davis, "Random walks on pseudolattices", Physica A, in press.

    Google Scholar 

  36. G.S. Joyce, "Exact results for a body-centered cubic lattice Green's function with applications in lattice statistics. I", J. Math. Phys. 12 (1971) 1390–1414.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. G.S. Joyce, "On the simple cubic lattice Green function", Phil Trans. R. Soc. Lond. A 273 (1973) 583–610.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. B.D. Hughes and M.F. Shlesinger, "Lattice dynamics, random walks and nonintegral effective dimensionality", J. Math. Phys. 23 (1982) 1688–1692.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. B.D. Hughes, M.F. Shlesinger and E.W. Montroll, "Random walks with self-similar clusters", Proc. Natl. Acad. Sci. USA 78 (1981) 3287–3291.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. G.N. Watson, "Three triple integrals", Quart. J. Math (Oxford) 10 (1939) 266–276; see also [8]. Actually Watson states that the value of IBCC IBCC "appears to be fairly well known"; the reduction of this integral to known functions is very much simpler than that for IFCC or ISC.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. M.L. Glasser and I.J. Zucker, "Extended Watson integrals for the cubic lattices", Proc. Natl. Acad. Sci. USA 74 (1977) 1800–1801, and "Lattice sums", Theoretical Chemistry: Advances and Perspectives Vol. 5 pp. 67–139 (New York, Academic Press 1980). In an unpublished erratum, Glasser and Zucker correct their published formula to that stated in our Eq. (2.23).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. K. Lindenberg, V. Seshadri, K.E. Shuler and G.H. Weiss, "Lattice random walks for sets of random walkers. First passage times". J. Stat. Phys. 23 (1980) 11–25.

    Article  ADS  MathSciNet  Google Scholar 

  43. J.E. Gillis and G.H. Weiss, "Expected number of distinct sites visited by a random walk with an infinite variance", J. Math. Phys. 11 (1970) 1307–1312.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. W. Th. F. den Hollander and P.W. Kasteleyn, "Random walks with 'spontaneous emission’ on lattices with periodically distributed imperfect traps", Physica 112A (1982) 523–543, and "Random walks on lattices with points of two colours. I". Physica 117A (1983) 179–188.

    Article  ADS  MathSciNet  Google Scholar 

  45. M.D. Hatlee and J.J. Kozak, "Random walks on finite lattices with traps", Phys. Rev. B 21 (1980) 1400–1407, and "Random walks on finite lattices with traps. II. The case of a partially absorbing trap", ibid. 23 (1981) 1713–1718; C.A. Walsh and J.J. Kozak, "Exact algorithm for d-dimensional walks on finite and infinite lattices with traps", Phys. Rev. Lett. 47 (1981) 1500–1502.

    Article  ADS  Google Scholar 

  46. M.F. Shlesinger and B.D. Hughes, "Analogs of renormalization group transformations in random processes", Physica 109A (1981) 597–608.

    Article  ADS  MathSciNet  Google Scholar 

  47. R. Rammal and G. Toulouse, "Random walks on fractal structures and percolation clusters", J. Physique Letts. 44 (1983) L13–L22.

    Article  Google Scholar 

  48. U. Landman, E.W. Montroll and M.F. Shlesinger, "Random walks and master equations with internal degrees of freedom", Proc. Natl. Acad. Sci. USA 74 (1977) 430–433; U. Landman and M.F. Shlesinger, "Stochastic theory of multistate diffusion in perfect and defective lattice systems: I. Mathematical formalism and II. Case Studies", Phys. Rev. B. 19 6207–6219, 6220–6237.

    Article  ADS  MathSciNet  Google Scholar 

  49. J.M. Hill, "A discrete random walk model for diffusion in media with double diffusivity", J. Austral. Math. Soc., Series B 22 (1980) 58–74.

    Article  MathSciNet  MATH  Google Scholar 

  50. P.T. Cummings and G. Stell, "Random flights in Euclidean space. I. Generalized analysis and results for flights with prescribed hit expectance density about the origin", preprint, State University of New York at Stony Brook (1983).

    Google Scholar 

  51. G.S. Joyce, "Critical properties of the spherical model", in Phase Transitions and Critical Phenomena, Vol. 2, ed. C. Domb and M.S. Green, pp. 375–442 (London, Academic Press, 1972); for some other connections between random walks and critical phenomena, see H. Silver, N.E. Frankel and B.W. Ninham, "A class of mean field models", J. Math. Phys. 13 (1972) 468–474.

    Google Scholar 

  52. E.W. Montroll, "On the dynamics of the Ising model of cooperative phenomena", Proc. Natl. Acad. Sci. USA 78 (1981) 36–40; E.W. Montroll and H. Reiss, "Phase transition versus disorder: A criterion derived from a two-dimensional dynamic ferromagnetic model", ibid 2659–2663.

    Article  ADS  MathSciNet  Google Scholar 

  53. J. Gillis, "Centrally biased discrete random walk", Quart. J. Math. (Oxford) 7 (1956) 144–152. See also [34].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. V. Seshadri and B.J. West, "Fractal dimensionality of Lévy processes", Proc. Natl. Acad. Sci. USA 79 (1982) 4501–4505.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. P. Lévy, Théorie de l'addition des variables aléatoires (Paris, Gauthier-Villars, 1937).

    MATH  Google Scholar 

  56. B.V. Gnedenko and A.N. Kolmogorov, Limit distributions for sums of independent random variables, revised edition (Reading, Massachusetts, Addison-Wesley, 1968).

    MATH  Google Scholar 

  57. B.B. Mandelbort, Fractals: Form, Chance and Dimension (San Francisco, Freeman, 1977).

    Google Scholar 

  58. B.B. Mandelbrot, The Fractal Geometry of Nature (San Francisco, Freeman, 1982).

    MATH  Google Scholar 

  59. R.G. Laha and V.K. Rohatgi, Probability Theory (New York, Wiley, 1979).

    MATH  Google Scholar 

  60. I. Oppenheim, K.E. Shuler and G.H. Weiss, Stochastic processes in chemical physics: The master equation (Cambridge, Massachusetts, M.I.T. Press, 1977). A number of classic articles on master equations are reprinted in this volume.

    Google Scholar 

  61. R.W. Zwanzig, "Statistical mechanics of irreversibility", Lectures in Theoretical Physics (Boulder) Vol. 3. pp. 106–141 (New York, Interscience, 1961). This article, and some others on the same topic are included in [60].

    Google Scholar 

  62. V.M. Kenkre, "The master equation approach: coherence, energy, energy transfer, annihilation and relaxation", in V.M. Kenkre and P. Reineker, Exciton dynamics in molecular crystals and aggregates, Springer Tracts in Modern Physics No. 94, pp. 1–109 (Berlin, Springer, 1982).

    Chapter  Google Scholar 

  63. P. Lévy, "Processus Semi-Markoviens", Proceedings of the International Congress of Mathematicians, Amsterdam 1954, Vol. 3, pp. 416–426 (Amsterdam, North-Holland, 1956).

    MATH  Google Scholar 

  64. W. Feller, "On Semi-Markov processes", Proc. Natl. Acad. Sci. USA 51 (1964) 653–659.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  65. W.L. Smith, "Regenerative stochastic processes", Proc. Roy. Soc. Lond A 232 (1955) 6–31.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  66. R. Pyke, "Markov renewal processes: definitions and preliminary properties", Ann. Math. Stat. 32 (1961) 1231–1242.

    Article  MathSciNet  MATH  Google Scholar 

  67. B.W. Connolly, "On randomized random walks", SIAM Rev. 13 (1971) 81–99; in this paper Connolly allows steps to the left and right to have different time constants α in Eq. (4.14).

    Article  MathSciNet  Google Scholar 

  68. H. Scher and M. Lax, "Stochastic transport in a disordered solid. I. Theory", Phys. Rev. B 7 (1973) 4491–4502.

    Article  ADS  MathSciNet  Google Scholar 

  69. M.F. Shlesinger, J. Klafter and Y.M Wong, "Random walks with infinite spatial and temporal moments", J. Stat. Phys. 27 (1982) 499–512.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  70. V.M. Kenkre, E.W. Montroll and M.F. Shlesinger, "Generalized master equations for continuous-time random walks", J. Stat. Phys. 9 (1973) 45–50.

    Article  ADS  Google Scholar 

  71. D. Bedeaux, K. Lakatos-Lindenberg and K.E. Shuler, "On the relation between master equations and random walks and their solutions", J. Math. Phys. 12 (1971) 2116–2123.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  72. S-K. Ma, Modern Theory of Critical Phenomena, pp. 410–414 (Reading, Massachusetts, W.A. Benjamin, 1976).

    Google Scholar 

  73. D.J. Amit, G. Parisi and L. Peliti, "Asymptotic behavior of the ‘true’ self-avoiding walk", Phys. Rev. B. 27 (1983) 1635–1645. They consider the case in which the probability of stepping to a nearest-neighbour site j of the current site i is p(j,i)=exp(-gnj)/∑l exp(-gnl), the sum being taken over all nearest-neighbours of site i, g>0 and nl being the number of previous visits to site l. A renormalization treatment of this problem has been given by S.P. Obukhov and L. Peliti, "Renormalization of the ‘true’ self-avoiding walk", J. Phys. A. 16 (1983) L147–L151; see also L. Pietronero, "Critical dimensionality and exponent of the ‘true’ self-avoiding walk", Phys. Rev. B. 27 (1983) 5887–5889. It appears that the analogue of the exponent v defined by (5.9) is independent of the dimensionality E for E>2.

    Article  ADS  MathSciNet  Google Scholar 

  74. H. Yamakawa, Modern Theory of Polymer Solutions (New York, Harper and Row, 1971). See also P.G. de Gennes, "Some conformation problems for long macromolecules", Rep. Prog. Phys. 32 (1969) 187–205; S.G. Whittington, "The excluded volume effect in polymers", J. Phys. A. 3 (1970) 28–32; K.F. Freed, "Functional integrals and polymer statistics", Advances in Chemical Physics 22 (1972) 1–128.

    Google Scholar 

  75. P.G. de Gennes, Scaling Concepts in Polymer Physics (Ithaca, New York, Cornell University Press, 1979).

    Google Scholar 

  76. C. Domb, "Self-avoiding walks on lattices", Advances in Chemical Physics 15 (1969) 229–259. This review emphasises series expansion analyses of the large n forms of cn, un and R 2n .

    Google Scholar 

  77. C. Domb, "From random to self-avoiding walks", J. Stat. Phys. 30 (1983) 425–436. This article covers some developments since the appearance of [76]. (Domb also discusses a model which interpolates between ordinary Pólya and self-avoiding walks due to C. Domb and G.S. Joyce, "Cluster expansion for a polymer chain", J. Phys. C. 5 (1972) 956–976. See also F. Family and H. Gould, "Polymer chain statistics and universality; crossover from random to self-avoiding walks", J. Phys. A. (1983) in press.)

    Article  ADS  MathSciNet  Google Scholar 

  78. D.S. McKenzie, "Polymers and scaling", Physics Reports 27 (1976) 35–88.

    Article  ADS  Google Scholar 

  79. S.G. Whittingon, "Statistical mechanics of polymer solution and polymer adsorption", Advances in Chemical Physics 51 (1982) 1–48.

    Article  Google Scholar 

  80. J.M. Hammersley, G.M. Torrie and S.G. Whittington, "Self-avoiding walks interacting with a surface", J. Phys. A 15 (1982) 539–571.

    Article  ADS  MathSciNet  Google Scholar 

  81. B. Vincent and S.G. Whittington, "Polymers at interfaces and in disperse systems", in Surface and Colloid Science, ed. E. Matijevic, Vol. 12, pp. 1–117 (New York, Plenum, 1982).

    Chapter  Google Scholar 

  82. M.F. Shlesinger, "Weierstrassin Lévy flights and self-avoiding random walks", J. Chem. Phys. 78 (1983) 416–419; S. Havlin and D. Ben-Avraham, "Fractal dimensionality of polymer chains", J. Phys. A 15 (1982) L311–L316; "New method of analysing self-avoiding walks in four dimensions", ibid. L317–L320; "New approach to self-avoiding walks as a critical phenomenon" ibid. L321–L328; "Theoretical and numerical study of fractal dimensionality in self-avoiding walks", Phys. Rev. A 26 (1982), 1728–1734.

    Article  ADS  MathSciNet  Google Scholar 

  83. J.M. Hammersley and K.W. Morton, "Poor Man's Monte Carlo", J. Roy. Stat. Soc. B 16 (1954), 23–38.

    MathSciNet  MATH  Google Scholar 

  84. S.R. Broadbent and J.M. Hammersley, "Percolation processes. I. Crystals and mazes", Proc. Camb. Phil. Soc. 53 (1954) 629–641.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  85. J.M. Hammersley, "Percolation processes. II. The connective constant", Proc. Camb. Phil. Soc. 53 (1957) 642–645.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  86. J.M. Hammersley, "The number of polygons on a lattice", Proc. Camb. Phil. Soc. 57 (1961) 516–523.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  87. J.M. Hammersley and D.J.A. Welsh, "Further results on the rate of convergence to the connective constant of the hypercubical lattice", Quart. J. Math. Oxford 13 (1962) 108–110. These authors establish that for hypercubic lattices of dimension E, κn⩽loq cn⩽κn+γ√n+log E, with γ independent of E.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  88. H. Kesten, "On the number of self-avoiding walks", J. Math. Phys. 4 (1963) 960–969; "On the number of self-avoiding walks. II", ibid. 5 (1964) 1128–1137.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  89. M.E. Fisher, "The shape of a self-avoiding walk or polymer chain", J. Chem. Phys. 44 (1966) 616–622.

    Article  ADS  MathSciNet  Google Scholar 

  90. J.M. Hammersley, "Long-chain polymers and self-avoiding random walks. I and II", Sankhya, Series A 25 (1963) 29–38, 269–272. It may be noted that z−1 is (trivially) the connective constant of a Bethe lattice with coordination number z. Since the coordination number of the hypercubic lattice is 2E, Eq. (5.11) shows that as E → ∞, μ approaches the Bethe lattice result.

    MathSciNet  MATH  Google Scholar 

  91. M.G. Watts, "Application of the method of Padé approximants to the excluded volume problem", J. Phys. A 8 (1975) 61–66.

    Article  ADS  Google Scholar 

  92. P.G. de Gennes, "Exponents for the excluded volume problem as derived by the Wilson method", Phys. Lett. 38A (1972) 339–340.

    Article  ADS  Google Scholar 

  93. R.G. Bowers and A. McKerrell, "An exact relation between the classical n-vector model ferromagnet and the self-avoiding walk problem", J. Phys. C. 6 (1973) 2721–2732.

    Article  ADS  Google Scholar 

  94. J. des Cloizeaux, "Lagrangian theory for a self-avoiding random chain", Phys. Rev. A. 10 (1974) 1665–1669; also "The Lagrangian theory of polymer solutions at intermediate concentrations", J. Physique 36 (1975) 281–291, and "Théories Lagrangiennes à zéro composante. Application à l'étude des polymères en solution (chaînes avec volume exclu) et des propriétés d'électrons soumis à un potentiel aléatoire" J. Physique 37, suppl. C1 (1976) 255–269.

    Article  ADS  Google Scholar 

  95. G. Sarma, Appendix to M. Daoud, J.P. Cotton, B. Farnoux, G. Jannink, G. Sarma, H. Benoit, R. Duplessix, C. Picot and P.G. de Gennes, "Solutions of flexible polymers. Neutron experiments and interpretation", Macromolecules 8 (1975) 804–818; see also G. Sarma, "Conformation des polymères en solution", in Ill-Condensed Matter, ed. R. Balian, R. Maynard and G. Toulouse, pp. 537–552 (Amsterdam, North-Holland, 1979).

    Article  ADS  Google Scholar 

  96. P.D. Gujrati, "A new mapping between self-avoiding walks and the n → 0 limit", J. Phys. A 14 (1981) L345–L348; "Correct correspondence between self-avoiding random walks and a magnetic system as n → 0 on a lattice", Phys. Rev. B 24 (1981) 2854–2856; "Magnetic analog of self-avoiding walks (polymer chains) on a lattice", Phys. Rev. A 24 (1981) 2096–2108.

    Article  ADS  MathSciNet  Google Scholar 

  97. J. Wheeler and P. Pfeuty, "Polymer statistics, the n-vector model, and thermodynamic stability", Phys. Rev. A 23 (1981) 1531–1534 (Erratum, ibid. 24 (1981) 646); also "The n → 0 vector model and equilibrium polymerization¹, Phys. Rev. A 24 (1981) 1050–1062.

    Article  ADS  MathSciNet  Google Scholar 

  98. B. Widom, "Equation of state in the neighborhood of the critical point", J. Chem. Phys. 43 (1965) 3898–3905; L.P. Kadanoff, W. Götze, D. Hamblen, R. Hecht, E.A.S. Lewis, V.V. Palcizuskas, M Rayl, J. Swift, D. Aspnes and J. Kane, "Static phenomena near critical points: Theory and experiment", Rev. Mod. Phys. 39 (1967) 395–431.

    Article  ADS  Google Scholar 

  99. S. Havlin and D. Ben-Avraham, to "Corrections to scaling in self-avoiding walks", Phys. Rev. A 27 (1983) 2759–2762 give the estimate ν=0.588±0.003 in three dimensions, using a method based on fractal dimensionality, while J.C. le Guillou and Z. Zinn-Justin, "Critical exponents from field theory", Phys. Rev. B. 21 (1980) 3976–3998 give ν=0.588 ± 0.001. Evidence is thus accumlating that in three dimensions the ‘accepted’ values of the exponents are not precisely correct.

    Article  ADS  Google Scholar 

  100. H.J. Hilhorst, "Renormalization of the self-avoiding walk on a lattice", Phys. Lett. 56A (1976) 153–154, and "Real-space renormalization of the self-avoiding walk by a linear transformation", Phys. Rev. B. 16 (1977) 1253–1265; J.C. le Guillou and J. Zinn-Justin, "Critical exponents for the n-vector model in three dimensions from field theory", Phys. Rev. Lett. 39 (1977) 95–98, and "Critical exponents from field theory", Phys. Rev. B 21 (1980) 3976–3998.

    Article  ADS  Google Scholar 

  101. B. Derrida, "Phenomenological renormalization of the self avoiding walk in two dimensions", J. Phys. A 14 (1981) L5–L9.

    Article  ADS  MathSciNet  Google Scholar 

  102. B. Nienhuis, "Exact critical point and critical exponents of 0(n) models in two dimensions", Phys. Rev. Lett. 49 (1982) 1062–1065. For a reconciliation of Nienhuis' results with numerically determined values of critical exponents see I. Majid, Z.V. Djordjevic and H.E. Stanley, "Correlation length exponent for the 0(n) model in two dimensions for n=0", Phys. Rev. Lett. 51 (1983) 143, and A.J. Guttmann, "On two dimensional self-avoiding walks", preprint, University of Newcastle (1983).

    Article  ADS  MathSciNet  Google Scholar 

  103. P.W. Kasteleyn, "A soluble self-avoiding walk problem", Physica 29 (1963) 1329–1337; see also M.N. Barber, "Asymptotic results for self-avoiding walks on a Manhattan lattice", Physica 48 (1970) 237–241.

    Article  ADS  MathSciNet  Google Scholar 

  104. B.K. Chakrabarti and S.S. Manna, "Critical behaviour of directed self-avoiding walks", J. Phys. A 16 (1983) L113–L116. The numerical estimate v≃0.86 for a two dimensional directed self-avoiding walk given in this paper has been shown to be inaccurate by S. Redner and I. Majid ("Critical properties of directed self-avoiding walks", J. Phys. A 16 (1983) L307–L310), who derive the exact result that v=1. Directed self-avoiding walks can be used to construct rigorous bounds on the connective constant of a lattice: see M.E. Fisher and M.F. Sykes, "Excluded volume problem and the Ising model of ferromagnetism", Phys. Rev. 114 (1959) 45–58.

    Article  ADS  MathSciNet  Google Scholar 

  105. F.W. Wiegel, "Markovian nature of the two-dimensional self-avoiding walk problem", Physica 98A (1979) 345–351; see also "On a remarkable class of two-dimensional random walks", J. Math. Phys. 21 (1980) 2111–2113.

    Article  ADS  MathSciNet  Google Scholar 

  106. M. Eden, "A two-dimensional growth process", Proceedings of the 4th Berkeley Symposium on Mathematical Statistics and Probability, ed. J. Neyman, Vol. 4, pp. 223–239 (Berkeley, University of California Press, 1961).

    Google Scholar 

  107. T.A. Witten and L.M. Sander, Diffusion-limited aggregation, a kinetic critical phenomenon", Phys. Rev. Lett. 47 (1981) 1400–1403; P. Meakin, "Diffusion controlled cluster growth in two, three and four dimensions", Phys. Rev. A 27 (1983) 604–607; P. Meakin, "Diffusion-controlled deposition on fibers and surfaces", Phys. Rev. A 27 (1983) 2616–2623; T.A. Witten and L.M. Sander, "Diffusion-limited aggregation", Phys. Rev. B 27 (1983) 5686–5697.

    Article  ADS  Google Scholar 

  108. S.R. Broadbent, in "Discussion on the Symposium on Monte Carl Methods", J. Roy. Stat. Soc. Series B 16 (1954) 68.

    Google Scholar 

  109. J.M. Hammersley, "Percolation processes: lower bounds for the critical probability", Ann. Math. Stat. 28 (1957) 790–795.

    Article  MathSciNet  MATH  Google Scholar 

  110. J.M. Hammersley, "Comparison of atom and bond percolation processes", J. Math. Phys. 2 (1961) 728–733; for some two-dimensional lattices the inequality p BC ≤ p SC was given earlier by M.E. Fisher, "Critical probabilities for cluster size and percolation problems", J. Math Phys. 2 (1961) 620–627.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  111. J.M. Hammersley, "Bornes supérieures de la probabilité critique dans un processus de filtration", Le Calcul des Probabilités et ses Applications, pp. 17–34 (Centre Nationale de la Recherche Scientifique, Paris, 1959); discussion ibid. pp. 35–37.

    Google Scholar 

  112. M.E. Fisher and J.W. Essam, "Some cluster size and percolation problems", J. Math. Phys. 2 (1961) 609–619.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  113. J.W. Essam, "Percolation and cluster size", in Phase Transitions and Critical Phenomena, Vol. 2 (ed. C. Domb and M.S. Green) pp. 197–270 (London, Academic Press, 1972).

    Google Scholar 

  114. M.F. Sykes and J.W. Essam, "Exact critical probabilities for site and bond problems in two dimensions", J. Math. Phys. 5 (1964) 1117–1127.

    Article  ADS  MathSciNet  Google Scholar 

  115. H. Kesten, "The critical probability of bond percolation on the square lattice equals 1/2" Comm. Math. Phys. 74 (1980) 41–59.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  116. H. Kesten, Percolation Theory for Mathematicians (Boston, Birkhaüser, 1982).

    Book  MATH  Google Scholar 

  117. J.C. Wierman, "Bond percolation on honeycomb and triangular lattices", Adv. Appl. Prob. 13 (1981) 298–313.

    Article  MathSciNet  MATH  Google Scholar 

  118. J.C. Wierman, "Percolation theory", Ann. Prob. 10 (1982) 509–524.

    Article  MathSciNet  MATH  Google Scholar 

  119. J.W. Essam, "Percolation theory", Rep. Proq. Phys. 43 (1980) 833–912.

    Article  ADS  MathSciNet  Google Scholar 

  120. D. Stauffer, "Scaling theory of percolation clusters", Phys. Rep. 54 (1979), 1–74.

    Article  ADS  Google Scholar 

  121. D. Stauffer, "Scaling properties of percolation clusters", Lecture Notes in Physics 149 (1981) 9–25.

    Article  ADS  Google Scholar 

  122. H. Kesten, "Analyticity properties and power law estimates of functions in percolation theory", J. Stat. Phys. 25 (198) 717–756.

    Google Scholar 

  123. P.W. Kasteleyn and C.M. Fortuin, "Phase transitions in lattice systems with random local properties", J. Phys. Soc. Japan Suppl. 26 (1969) 11–14. See also C.M. Fortuin and P.W. Kasteleyn, "On the random cluster model. I. Introduction and relation to other models", Physica 57 (1972) 536–564; F.Y. Wu, "Percolation and the Potts model", J. Stat. Phys. 18 (1978) 115–123; and S. Alexander, "Hamiltonian formulation of bond percolation: an alternative derivation", J. Phys. A 11 (1978) 1803–1806.

    ADS  Google Scholar 

  124. A.G. Dunn, J.W. Essam and J.M. Loveluck, "Scaling theory for the pair connectedness in percolation models", J. Phys. C 8 (1975) 743–750.

    Article  ADS  Google Scholar 

  125. P. Pfeuty and G. Toulouse, Introduction to the Renormalization Group and to Critical Phenomena (New York, Wiley, 1977).

    Google Scholar 

  126. G.S. Rushbrooke, "On the thermodynamics of the critical region of the Ising problem", J. Chem. Phys. 39 (1963) 842–843.

    Article  ADS  Google Scholar 

  127. R.B. Griffiths, "Thermodynamic inequality near the critical point for ferromagnets and fluids", Phys. Rev. Lett. 14 (1965) 623–624.

    Article  ADS  MathSciNet  Google Scholar 

  128. G. Toulouse, "Perspectives from the theory of phase transitions", Nuovo Cimento 23B (1974) 234–240. The existence of the upper critical dimension EC, and the result that EC=6 for percolation theory, are generally believed by physicists, but like most "known results" of percolation theory, rigorous proofs are lacking. Monte Carlo simulations of S. Kirkpatrick, "Percolation processes in higher dimensions: approach to the mean-field limit", Phys. Rev. Lett. 36 (1976) 69–72 support Toulouse's results.

    Article  ADS  Google Scholar 

  129. A.B. Harris, T.C. Lubensky, W.K. Holcomb and C. Dasgupta, "Renormalization group approach to percolation problems", Phys. Rev. Lett. 35 (1975) 327–330 (errata, ibid., 1397).

    Article  ADS  Google Scholar 

  130. Mean field theories of ferromagnetic models neglect fluctuations, by assuming that partial ordering of the spins produces a uniform local magnetic field. See, for example, ref. [72], pp. 34–39. Mean field calculations predict that α=α′ and γ=γ′.

    Google Scholar 

  131. R. Bass and M.J. Stephen, "Voltage correlations in a random Bethe lattice", J. Phys. C. 8 (1975) L281–L284 propose a definition of ξ(p) which gives a finite correlation length at p=pC; alternative definitions are given by A. Coniglio, "Some cluster size and percolation problems for interacting spins", Phys. Rev. B 13 (1976) 2194–2207, and J.P. Straley, "The ant in the labyrinth: diffusion in random networks near the percolation threshold", J. Phys. C 13 (1980) 2991–3002.

    Article  ADS  Google Scholar 

  132. M.J. Stephen, "Site-cluster distributors and equation of state for the bond percolation model", Phys. Rev B 15 (1977) 5674–5680; see also R.G. Priest and T.C. Lubensky, "Critical properties of two tensor models with application to the percolation problem", Phys. Rev. B 13 (1976) 4159–4171 (errata ibid. 14 (1976) 5125).

    Article  ADS  MathSciNet  Google Scholar 

  133. M.P.M. den Nijs, "A relation between the temperature exponents of the eight-vertex and q-state Potts model", J. Phys. A 12 (1979) 1857–1868; see also "Extended scaling relation for the magnetic critical exponents of the q-state Potts model", Phys. Rev. B 27 (1983) 1674–1679.

    Article  ADS  Google Scholar 

  134. B. Nienhuis, E.K. Riedel and M. Schick, "Magnetic exponents of the two dimensional q-state Potts model", J. Phys. A. 13 (1980) L189–L192.

    Article  ADS  MathSciNet  Google Scholar 

  135. R.B. Pearson, "Conjecture for the extended Potts model magnetic eigenvalue", Phys. Rev. B 22 (1980) 2579–2580.

    Article  ADS  Google Scholar 

  136. R.B. Pearson, "Number theory and critical exponents", Phys. Rev. B 22 (1980) 3465–3470. With a few modest assumptions, Pearson shows that if the critical exponents α and β are rational, and therefore able to be written as the ratio m/n of two relatively prime integers m and n, the value of n can be predicted.

    Article  ADS  MathSciNet  Google Scholar 

  137. Applications oriented reviews include: H.L. Frisch and J.M. Hammersley, "Percolation processes and related topics", J. Soc. Indust. Appl. Math. 4 (1963) 894–918

    Article  MathSciNet  MATH  Google Scholar 

  138. Applications oriented reviews include: H.E. Stanley, "New directions in percolation theory including possible applications to the real world", Lecture Notes in Physics, 149 (1981) 59–83.

    Article  ADS  Google Scholar 

  139. Applications oriented reviews include: G. Deutscher, "Experimental relevance of percolation", Lecture Notes in Physics 149 (1981) 26–40.

    Article  ADS  Google Scholar 

  140. The article by V.K.S. Shante and S. Kirkpatrick, "An introduction to percolation theory", Adv. Phys. 20 (1971) 325–357 remains a good introduction to the subject, and addresses applications of interest in condensed matter physics. For more recent developments in this area see the following articles in Ill-Condensed Matter (ed. R. Balian, R. Maynard and G. Toulouse: Amsterdam, North-Holland, 1979): D.J. Thouless, "Percolation and localization" (pp. 1–62); S. Kirkpatrick, "Models of disordered materials" (pp. 321–403); T.C. Lubensky, "Thermal and geometrical critical phenomena in random systems" (pp. 405–475).

    Article  ADS  Google Scholar 

  141. The structure of the connected component as p → p +c is examined by S. Kirkpatrick, "The geometry of the percolation threshold", in AIP Conference Proceedings Vol. 40, ed. J.C. Garland and D.B. Tanner, pp. 99–117 (New York, American Institute of Physics, 1978); see also Redner's first article in this volume. Illustrations from a motion picture recording the growth of connectivity as p increases are given by C. Domb, E. Stoll and T. Schneider, "Percolation clusters", Contemp. Phys. 21 (1980) 577–592.

    Chapter  Google Scholar 

  142. The problem of polymer gelation, interpreted as a percolation process, is reviewed by D. Stauffer, A. Coniglio and M. Adam, "Gelation and critical phenomena", Adv. Polymer Sci. 44 (1982) 103–158; this article also contains a useful survey of variants of the basic percolation model.

    Article  Google Scholar 

  143. The following articles are written with emphasis on fundamental mathematical problems in percolation theory, including the problem of "first passage percolation": D.J.A. Welsh, Percolation and related topics", Sci. Prog. Oxf. 64 (1977) 65–83; J.M. Hammersley and D.J.A. Welsh, "First passage percolation, subadditive processes, stochastic networks, and generalized renewal processes", in Bernoulli-Bayes-Laplace Anniversary Volume (ed. J. Neyman and L.M. le Cam), pp. 61–110 (New York, Springer-Verlag, 1965); J.M. Hammersley and D.J.A. Welsh, "Percolation theory and its ramifications", Contemp. Phys. 21 (1981) 593–605; see also the monograph by R.T. Smythe and J.C. Wierman, "First passage percolation on the square lattice", Lecture Notes in Mathematics 671 (1978).

    Google Scholar 

  144. P.H. Winterfeld, L.E. Scriven and H.T. Davis, "Percolation and conductivity of random two-dimensional composites", J. Phys. C. 14 (1981) 2361–2376.

    Article  ADS  Google Scholar 

  145. S.W. Haan and R. Zwanzig, "Series expansions in a continuum percolation problem", J. Phys. A. 10 (1977) 1547–1555.

    Article  ADS  Google Scholar 

  146. E.T. Gawlinski and H.E. Stanley, "Continuum percolation in two dimensions: Monte Carlo tests of scaling and universality for non-interacting discs", J. Phys. A 14 (1981) L291–L299.

    Article  ADS  MathSciNet  Google Scholar 

  147. R. Zallen, "Stochastic qeometry", in Fluctuation phenomena (ed. E.W. Montroll and J.L. Lebowitz) pp. 177–228 (Amsterdam, North-Holland, 1979). See also a book by Y. Waseda, The structure of non-cyrstalline materials (New York, McGraw-Hill, 1980).

    Chapter  Google Scholar 

  148. S.A. Roach, The theory of random clumping (London, Methuen, 1968).

    MATH  Google Scholar 

  149. S. Kirkpatrick, "Percolation and conduction", Rev. Mod. Phys. 45 (1973) 574–588.

    Article  ADS  Google Scholar 

  150. J.P. Clerc, G. Giraud, J. Roussenq, R. Blanc, J.P. Carton, E. Guyon, H. Ottavi and D. Stauffer, "La percolation: modèles, simulations analogiques et numériques", Annales de Physique 8 (1983) 3–105.

    Google Scholar 

  151. In principle one should prove that the critical value of p defined via the conductivity coincides with the topologically defined bond percolation threshold of section 6. Kesten [116] has given a proof of this for the square lattice.

    Google Scholar 

  152. B. Derrida and J. Vannimenus, "A transfer matrix approach to random resistor networks", J. Phys. A. 15 (1982) L557–L564.

    Article  ADS  MathSciNet  Google Scholar 

  153. P.G. de Gennes, "On a relation between percolation theory and the elasticity of gels", J. Physique Lett. 37 (1976) L1–L2.

    Article  ADS  Google Scholar 

  154. A.B. Harris and R. Fisch, "Critical behavior of random resistor networks", Phys. Rev. Lett. 38 (1977) 796–799.

    Article  ADS  Google Scholar 

  155. R.B. Stinchcombe, "The branching model for percolation theory and electrical conductivity", J. Phys. C. 6 (1973) L1–L5, and "Conductivity and spin-wave stiffness in disordered systems — an exactly soluble model", J. Phys. C. 7 (1974) 179–203; see also J. Heinrichs and N. Kumar, "Simple exact treatment of conductance in a random Bethe lattice", J. Phys. C 8 (1975) L510–L516.

    Article  ADS  MathSciNet  Google Scholar 

  156. J.P. Straley, "Random resistor tree in an applied field", J. Phys. C 10 (1977) 3009–3013.

    Article  ADS  Google Scholar 

  157. S. Alexander and R. Orbach, "Density of states on fractals: ‘fractons'", J. Physique Lett. 43 (1982) L625–L631; see especially the note added in proof.

    Article  Google Scholar 

  158. See, e.g., D.A.G. Bruggeman, "Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitatskonstanten und Leitfahigkeiten der Mischkorper aus isotropen Substanzen", Ann. Phys. (Leipzig) 24 (1935) 636–697, and R. Landauer, "The electrical resistance of a binary mixture", J. Appl. Phys. 23 (1952) 779–784.

    Article  ADS  Google Scholar 

  159. A substantial review of the coherent potential approximation has been given by F. Yonezawa and K. Morigaki, "Coherent potential approximation — Basic concepts and applications", Prog. Theor. Phys. Suppl. 53 (1973) 1–75. See also the short expository article by J.A. Krumhansl, "It's a random world", in Amorphous Magnetism (ed. H.O. Hooper and A.M. de Graaf) pp. 15–25 (New York, Plenum, 1973), and for more recent references, F. Yonezawa, "Transport properties of liquid non-simple metals", J. Physique 41 suppl. C8 (1980) 447–457. For a proof of the equivalence of the coherent potential approximation and the effective medium approximation see M. Hori and F. Yonezawa, "Statistical theory of effective electrical, thermal, and magnetic properties of random heterogeneous materials. IV. Effective medium theory and cumulant expansion method", J. Math. Phys. 16 (1975) 352–364. These authors propose a different approximation technique, employing cumulants, which predicts that pc=1−exp(−2/z) for a lattice of coordination number z. For large z this reduces to the effective medium result (7.12). Although for two-dimensional lattices, their prediction is less accurate then (7.12), the situation is reversed in three dimensions.

    Article  ADS  Google Scholar 

  160. S. Kirkpatrick, "Classical transport in disordered media: scaling and effective-medium theories", Phys. Rev. Lett. 27 (1971) 1722–1725.

    Article  ADS  Google Scholar 

  161. M. Sahimi, B.D. Hughes, L.E. Scriven and H.T. Davis, "Real-space renormalization and effective medium approximation to the percolation conduction problem", Phys. Rev. B. 28 (1983), 307–311. For other improvements of the basic effective medium approximation based on finite clusters of bonds see, for example: L. Turban, "On the effective-medium approximation for bond-percolation conductivity", J. Phys. C 11 (1978) 449–459, T. Nagatani, "A two-bond theory of conductivity in bond disordered resistor networks", J. Phys. C 14 (1981) 3383–3391 and references cited therein. An ad hoc, but effective alternative approach has been given by M. Nakamura, "A method to improve the effective medium theory towards percolation problem", J. Phys. C 15 (1982) L749–L752.

    Article  ADS  Google Scholar 

  162. J.W. Essam, C.M. Place and E.H. Sondheimer, "Self consistent calculation of the conductivity in a disordered branching network", J. Phys. C 8 (1974) L258–L260.

    Article  Google Scholar 

  163. P.M. Kogut and J.P. Straley, "Distribution-induced non-universality of the percolation conductivity exponents", J. Phys. C 12 (1979) 2151–2159; see also A. Ben-Mizrahi and D.J. Bergman, "Non-universal critical behaviour of random resistor networks with a singular distribution of conductances", J. Phys. C. 14 (1981) 909–922, and J.P. Straley, "Non-universal threshold behaviour of random resistor networks with anomalous distributions of conductances", J. Phys. C. 15 (1982) 2343–2345, where renormalization group arguments are used.

    Article  ADS  Google Scholar 

  164. J. Bernasconi and H.J. Weisman, "Effective-medium theories for site-disordered resistance networks", Phys. Rev. B 13 (1976) 1131–1139; T. Joy and W. Strieder, "Effective medium theory of site percolation in a random simple triangular conductance network", J. Phys. C 11 (1978) L867–L870 (errata ibid. 12 (1979) L53).

    Article  ADS  Google Scholar 

  165. J.P. Straley, "Critical phenomena in resistor networks", J. Phys. C. 9 (1976) 783–795; see Ref. [154] for a reinterpretation of some of these results with the now preferred definition of σ for the Bethe lattice. Also see Ref. 151 and R. Fisch and A.B. Harris, "Critical behavior of random resistor networks near the percolation threshold", Phys. Rev. B. 18 (1978) 416–420, where the formal relation of Kasteleyn and Fortuin [123] between the q-state Potts model in the limit q=0 and the resistance between sites of a homogeneous lattice is exploited.

    Article  ADS  Google Scholar 

  166. J.P. Straley, "Critical exponents for the conductivity of random resistor networks", Phys. Rev. B. 15 (1977) 5733–5737.

    Article  ADS  Google Scholar 

  167. J.P. Straley, "Threshold behaviour of random resistor networks: a synthesis of theoretical approaches", J. Phys. C. 15 (1982) 2333–2341.

    Article  ADS  MathSciNet  Google Scholar 

  168. See, for example, J. Koplik, "Creeping flow in two-dimensional networks", J. Fluid Mech. 119 (1982) 219–247. Koplik's analysis (see also his paper, "On the effective medium theory of random linear networks", J. Phys. C 14 (1981) 4821–4837) shows that for nonpercolative distributions, i.e. when f(g) has no delta function at g=0, the effective medium approximation is remarkably accurate. Indeed for a special class of such distributions, the effective medium approximation is exact for the square lattice: see J. Marchant and R. Gabillard, "Sue le calcul d'un réseau résistif aléatoire, C.R. Acad. Sci. Paris B281 (1975) 261–264.

    Article  ADS  MATH  Google Scholar 

  169. G.R. Jerauld, J.C. Hatfield, L.E. Scriven and H.T. Davis, "Percolation and conduction on Voronoi and triangular networks: a case study in topological disorder", to appear in J. Phys. C.

    Google Scholar 

  170. G.C. Koerber, Properties of Solids (Englewood Cliffs, N.J., Prentice-Hall, 1962) pp. 69–71. See also P.G. Sherman, Diffusion in solids (New York, McGraw-Hill, 1963) and Y. Adda and J. Philibert, La diffusion dans les solides, 2 volumes (Paris, Presses Universitaires de France, 1966).

    Google Scholar 

  171. Since the electrical transport properties of semiconductors are of immense technical importance (e.g. in the Xerox process) many experiments have been made. See, for example, references cited by H. Scher and M. Lax, "Stochastic transport in a disordered solid. II. Impurity conduction", Phys. Rev. B 7 (1973) 4502–4519.

    Article  ADS  MathSciNet  Google Scholar 

  172. Dispersion in disordered porous media is reviewed in J.J. Fried and M.A. Combernous, "Dispersion in porous media", Advances in Hydroscience 7 (1971) 169–282; for more recent references see e.g. M. Sahimi, L.E. Scriven and H.T. Davis, "Dispersion in disordered porous media", Chem. Eng. Comm., in press. The simpler case of dispersion in spatially periodic porous media has been analysed exhaustively by H. Brenner, "Dispersion resulting from flow through spatially periodic porous media", Phil. Trans. R. Soc. Lond. A 297 (1980) 81–133, and H. Brenner and P.M. Adler, "Dispersion resulting from flow through spatially periodic porous media. II. Surface and intraparticle transport", ibid. 307 (1982) 169–200.

    Article  Google Scholar 

  173. M.V. Kozlov, "Random walk in a one-dimensional random medium", Theory Prob. Appl. 18 (1973) 387–388.

    Article  MathSciNet  MATH  Google Scholar 

  174. F. Solomon, "Random walks in a random environment", Ann. Prob. 3 (1975) 1–31.

    Article  MathSciNet  MATH  Google Scholar 

  175. D.E. Temkin, "One-dimensional random walks in a two-component chain", Soviet Math. Dokl. 13 (1972) 1172–1176.

    MathSciNet  MATH  Google Scholar 

  176. Ya. G. Sinai, “The limiting behavior of a one-dimensional random walk in a random environment“, Theory Prob. Appl. 27 (1982) 256–268. Stated precisely Sinai's key result is as follows. Assume that <log σ>=0. Let ɛ>0 and δ>0 be given. For all sufficiently large n there exist a set Cn in the space of all realizations ω and a point m(n)=m(n;ω) for each ω ɛ Cn such that (i) the probability that a given realization belongs to Cn exceeds 1-ɛ; and (ii) with Pr denoting probability measure over all walks in a given environment ω, if ω ɛ Cn, then Pr(|Xn/log2n-m(n)| ⩽ δ) → 1 as n → ∞. The convergence is uniform in ω ɛ Cn, and as n → ∞ the probability distributions for m(n) converge weakly to some limit distribution.

    Article  MathSciNet  Google Scholar 

  177. H. Kesten, M.V. Kozlov and F. Spitzer, "A limit law for random walk in a random environment", Compositio Math. 30 (1975) 145–168.

    MathSciNet  MATH  Google Scholar 

  178. A distribution is called ‘arithmetic’ (see Ref. 20, p. 138) if it is concentrated on the set of points 0,±λ,±2λ,... for some positive λ called the 'span'. In the example (8.7), log σ has probability density function ψ(η)=(1−p) δ (η−log{a/[1−a]})+pδ(η+log{a/[1−a]}), i.e. an arithmetic distribution of span log{a/[1−a]}, and so is not covered by the results of Kesten et al.

    Google Scholar 

  179. B. Derrida and Y. Pomeau, "Classical diffusion in a random chain", Phys. Rev. Lett. 48 (1982) 627–630.

    Article  ADS  Google Scholar 

  180. B. Derrida, "Velocity and diffusion coefficient of a periodic one-dimensional hopping model", J. Stat. Phys. 31 (1983) 433–450.

    Article  ADS  MathSciNet  Google Scholar 

  181. S.A. Kalikow, "Generalized random walk in a random environment", Ann. Prob. 9 (1981) 753–768.

    Article  MathSciNet  Google Scholar 

  182. V.V. Anshelevich, K.M. Khanin and Ya. G. Sinai, "Symmetric random walks in random environments", Comm. Math. Phys. 85 (1982) 449–470. The analysis of this paper requires symmetry in local transition probabilities, but not isotropy. All of the results are established for anisotropic systems, and transitions are not restricted to nearest-neighbour sites.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  183. P.G. de Gennes, "La percolation: un concept unificateur", La Recherche 7 (1976) 919–927.

    Google Scholar 

  184. C.D. Mitescu and J. Roussenq, "Une fourmi dans un labyrinthe: diffusion dans un système de percolation", C.R. Acad. Sci. Paris 283A (1976) 999–1001.

    Google Scholar 

  185. C.D. Mitescu, H. Ottavi and J. Rousseng, "Diffusion on percolation lattices: the layrinthine ant", in AIP Conference Proceedings Vol. 40 (ed. J. Garland and D.B. Tanner) pp. 377–381 (New York, American Institute of Physics, 1978).

    Chapter  Google Scholar 

  186. J.P. Straley, "The any in the labyrinth: diffusion in random metworks near the percolation threshold", J. Phys. C 13 (1980) 2991–3002.

    Article  ADS  Google Scholar 

  187. Y. Gefen, A. Aharony and S. Alexander, "Anomalous diffusion on percolating clusters", Phys. Rev. Lett. 50 (1983) 77–80.

    Article  ADS  Google Scholar 

  188. D. Ben-Avraham and S. Havlin, "Diffusion on percolation clusters at criticality" J. Phys. A 15 (1982) L691–L697, and M. Sahimi and G.R. Jerauld, "Random walks on percolation clusters at the percolation threshold", submitted to J. Phys. C.

    Article  ADS  Google Scholar 

  189. Alternative models with continuous time-dependence are easily defined but not considered here. See, for example, G. Ritter, "A continuous-time analogue of random walk in a random environment", J. Appl. Prob. 17 (1980) 259–264, and B.D. Hughes, M. Sahimi, L.E. Scriven and H.T. Davis, "Transport and conduction in random systems", to appear in Int. J. Engng. Sci.

    Article  MathSciNet  MATH  Google Scholar 

  190. S. Alexander, J. Bernasconi, W.R. Schneider and R. Orbach, "Excitation dynamics in random one-dimensional systems", Rev. Mod. Phys. 53 (1981) 175–198. (These authors also consider the randomized rate equation cldPl/dt=W{Pl+1+Pl−1-2Pl} with W fixed, but {Cl} a set of independently and identically distributed random variables.)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  191. J. Bernasconi, S. Alexander and R. Orbach, "Classical diffusion in a one-dimensional disordered lattice", Phys. Rev. Lett 41 (1978) 185–187

    Article  ADS  Google Scholar 

  192. S. Alexander, J. Bernasconi and R. Orbach, "Spectral diffusion in a one-dimensional percolation model", Phys. Rev. B 17 (1978) 4311–4314

    Article  ADS  MathSciNet  Google Scholar 

  193. S. Alexander, J. Bernasconi and R. Orbach, "Low energy density of states for disordered chains", J. Physique 39 Suppl C6 (1978) 706–707

    Google Scholar 

  194. S. Alexander, J. Bernasconi, W.R. Schneider and R. Orbach, "Excitation dynamics in random one-dimensional systems", in Physics in One Dimension, ed. J. Bernasconi and T. Schneider, pp. 277–288 (Berlin, Springer-Verlag, 1981)

    Chapter  Google Scholar 

  195. J. Bernasconi and H.U. Beyeler, "Some comments on hopping in random one-dimensional systems", Phys. Rev. B 21 (1980) 3745–3747

    Article  ADS  Google Scholar 

  196. J. Bernasconi, H.U. Beyeler, S. Strässler and S. Alexander, "Anomalous frequency-dependent conductivity in disordered one-dimensional systems", Phys. Rev. Lett. 42 (1979) 819–822

    Article  ADS  Google Scholar 

  197. J. Bernasconi, W.R. Schneider and W. Wyss, "Diffusion and hopping conductivity in disordered one-dimensional lattice systems", Z. Phys. B 37 (1980) 175–184.

    Article  ADS  Google Scholar 

  198. J. Bernasconi and W.R. Schneider, "Classical hopping conduction in random one-dimensional systems: non universal limit theorems and quasilocalization effects", Phys. Rev. Lett. 47 (1981) 1643–1647.

    Article  ADS  MathSciNet  Google Scholar 

  199. W.R. Schneider and J. Bernasconi, "Diffusion in one-dimensional lattice systems with random transfer rates", Lecture Notes in Physics 153 (1982) 389–393.

    Article  ADS  Google Scholar 

  200. W.R. Schneider, "Hopping transport in disordered one-dimensional lattice systems: random walk in a random medium", Lecture Notes in Physics 173 (1982) 289–303.

    Article  ADS  Google Scholar 

  201. J. Bernasconi and W.R. Schneider, "Diffusion in random one-dimensional systems", J. Stat. Phys. 30 (1983) 355–362.

    Article  ADS  MathSciNet  Google Scholar 

  202. V.V. Anshelevich and A.V. Vologodskii, "Laplace operator and random walk on a one-dimensional nonhomogeneous lattice", J. Stat. Phys. 25 (1981) 419–430. These authors consider the master equation \((\partial /\partial t)P_\ell (t){\text{ }} = {\text{ }}[1 - \delta _{\ell ,1} ]a_{\ell - 1} {\text{ }}P_{\ell - 1} (t){\text{ }} - {\text{ }}(a_{\ell - 1} + a_\ell )P_\ell (t){\text{ }} + {\text{ }}[1 - \delta _{\ell ,{\rm N} - 1} ]a_\ell P_{\ell - 1} (t)\) which describes motion on a finite linear chain, with the zeroth and Nth sites absorbing boundaries. The lth site is assigned the coordinate l/N. When the limit N → ∞ is taken in an appropriate manner, the solution of the master equation is shown to approach the solution of the diffusion equation with absorbing boundaries, \((\partial /\partial t){\text{ }}p(x,t) = a(\partial ^2 /\partial x^2 )p(x,t){\text{ }},{\text{ }}p(0,t) = p(l,t) = 1\), so long as a \(a = \mathop {\lim }\limits_{N \to \infty } N(\sum\nolimits_{\ell = 0}^{N - 1} {a_\ell ^{ - 1} } )\) exists and is non-zero. For independent, randomly distributed coefficients al, this implies that if a −1l has finite mean <a −1l >, then the effective diffusion coefficient is a=<a −1l >−1 with probability 1.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  203. V.V. Bryksin, "Frequency dependence of the hopping conductivity of a one-dimensional system calculated by the effective-medium method", Sov. Phys. Solid St. 22 (1980) 1194–1199.

    Google Scholar 

  204. T. Odagaki and M. Lax, "Coherent-medium approximation in the stochastic transport theory of random media", Phys. Rev. B 24 (1981) 5284–5294. See also M. Lax and T. Odagaki, "Coherent medium approach to hopping conduction", Lecture Notes in Physics 154 (1982) 148–176.

    Article  ADS  Google Scholar 

  205. S. Summerfield, "Effective medium theory of A.C. hopping conductivity for random bond lattice models, Solid St. Comm. 39 (1981) 401–402.

    Article  ADS  Google Scholar 

  206. I. Webman, "Effective medium approximation for diffusion on a random lattice", Phys. Rev. Lett. 47 (1981) 1496–1499. See also I. Webman, "Effective medium approximation for diffusion or random networks", Lecture Notes in Physics 154 (1982) 297–303.

    Article  ADS  Google Scholar 

  207. J.W. Haus, K.W. Kehr and K. Kitahara, "Long-time tail effects on particle diffusion in a disordered system", Phys. Rev. B 25 (1982) 4918–4921.

    Article  ADS  Google Scholar 

  208. J.W. Haus, K.W. Kehr and K. Kitahara, "Transport in a disordered medium: analysis and Monte-Carlo simulation", Z. Phys. B 50 (1983) 161–169.

    Article  ADS  Google Scholar 

  209. B. Movaghar, M. Grunewald, B. Pohlmann, D. Wurtz and W. Schirmacher, "Theory of hopping and multiple-trapping transport in disordered systems", J. Stat. Phys. 30 (1983) 315–334, and references therein to earlier work of these authors.

    Article  ADS  Google Scholar 

  210. I. Webman and J. Klafter, "Diffusion in one-dimensional disordered systems: an effective-medium approximation", Phys. Rev. B 26 (1982) 5950–5952.

    Article  ADS  Google Scholar 

  211. M. Sahimi, B.D. Hughes, L.E. Scriven and H.T. Davis, "Stochastic transport in disordered systems", J. Chem. Phys. 78 (1983) 6849–6864.

    Article  ADS  MathSciNet  Google Scholar 

  212. For the Kirkpatrick random resister problem, the Green function formalism has been developed by J. A. Blackman, "A theory of conductivity in disordered resistor networks", J. Phys. C 9 (1976) 2049–2071, and G. Ahmed and J. A. Blackman, "On theories of transport in disordered media" ibid. 12 (1976) 837–853. Its extension to the present problem may be found in Ref. 201.

    Article  ADS  Google Scholar 

  213. M.J. Stephen and R. Kariotis, "Diffusion in a one-dimensional disordered system", Phys. Rev. B 26 (1982) 1917–2925.

    Article  ADS  Google Scholar 

  214. J. Machta, Generalized diffusion coefficient in one-dimensional random walks with static disorder", Phys. Rev. B 26 (1982) 2917–2925; "Renormalization group approach to random walks on disordered lattices", J. Stat. Phys. 30 (1983) 305–314.

    Article  Google Scholar 

  215. A. Igarashi, "Hopping diffusion in a one-dimensional random system", Prog. Thear. Phys. 69 (1983) 1031–1034.

    Article  ADS  Google Scholar 

  216. R. Zwanzig, "Non-Markoffian diffusion in a one-dimensional disordered lattice", J. Stat. Phys. 28 (1982) 127–133.

    Article  ADS  MathSciNet  Google Scholar 

  217. M.J. Stephen, "Diffusion on a directed percolating network", J. Phys. C 14 (1981) L1077–L1080.

    Article  ADS  Google Scholar 

  218. J. Bernasconi and W.R. Schneider, "Diffusion on a one-dimensional lattice with random asymmetric transition rates", J. Phys. A 15 (1983) L729–L734.

    Article  MathSciNet  Google Scholar 

  219. M. Barma and D. Dhar, "Directed diffusion in a percolation network", J. Phys. C 16 (1983) 1451–1458.

    Article  ADS  Google Scholar 

  220. See also B.D. Hughes, M. Sahimi, L.E. Scriven and H.T. Davis, "Transport and conduction in random systems", Int. J. Eng. Sci, in press. Such models are lattice versions of a classic colloid problem of M. Smoluchowski, ref 11; important recent papers with a physical chemistry orientation include B.U. Felderhof and J.M. Deutch, "Concentration dependence of the rate of diffusion-controlled reactions, J. Chem. Phys. 64 (1976) 4551–4558, P. Grassberger and I. Procaccia, "The long-time properties of diffusion in a medium with static traps", ibid. 77 (1982) 6281–6284, M. Muthukumar, "Concentration dependence of diffusion controlled processes among static traps", ibid. 76 (1982) 2667–2671, S. Prager and H. L. Frisch, "Diffusion-controlled reactions on a two-dimensional lattice", ibid. 72 (1980) 2941-, and R.F. Keyser and J.B. Hubbard, "Diffusion in a medium with a random distribution of static traps", Phys. Rev. Lett. 51 (1983) 79–82.

    Google Scholar 

  221. B. Movaghar, B. Pohlmann and W. Schirmacher, "Random walk in disordered hopping systems", Solid State Comm. 34 (1980) 451–454.

    Article  ADS  Google Scholar 

  222. J. Klafter and R. Silbey, “Derivation of the continuous-time random walk equation”, Phys. Rev. Lett. 44 (1980) 55-.

    Article  ADS  Google Scholar 

  223. We apologize to Charles Darwin for borrowing the structure, and the tone, of his concluding sentence in The Origin of Species, as our closing remark.

    Google Scholar 

References

  1. J.B. Keller, “Conductivity of a Medium Containing a Dense Array of Perfectly Conducting Spheres or Cylinders or Non-Conducting Cylinders”, J. Appl. Phys. 34 (1963) 991–993.

    Article  ADS  MATH  Google Scholar 

  2. J.L. Jackson and S.R. Coriell, “Effective Diffusion Constant in a Polyelectrolyte Solution”, J. Chem. Phys. 38 (1963) 959–968.

    Article  ADS  Google Scholar 

  3. H. Levine, “The Effective Conductiviy of a Regular Composite Medium”, J. Inst. Maths. Applics. 2 (1966) 12–28.

    Article  Google Scholar 

  4. D.R. McKenzie and R.C. Mc Phedran, “Exact Modeling of Cubic Lattice Permittivity and Conductivity”, Nature 265 (1977) 128–129.

    Article  ADS  Google Scholar 

  5. For a review see G.K. Batchelor “Transport Properties of Two-Phase Materials of Random Structure”, Ann. Rev. Fluid Mech. 6 (1974) 227–255.

    Article  ADS  MATH  Google Scholar 

  6. P.H. Winterfeld, L.E. Scriven and H.T. Davis, “Percolation and Conductivity of Random Two-Dimensional Composites” J. Phys. C 14 (1981) 2361–2376.

    Article  ADS  Google Scholar 

  7. W.F. Brown, “Solid Mixture Permittivities”, J. Chem. Phys. 23 (1955) 1514–1517.

    Article  ADS  Google Scholar 

  8. S. Prager, W. Kunkin, and H.L. Frisch, “Variational Approach to the Dielectric Constant of a Polarizable Medium”, J. Chem. Phys. 52 (1970) 4925–4930.

    Article  ADS  Google Scholar 

  9. W.E.A. Davies, “The Theory of Composite Dielectrics” J. Phys. D 4 (1971) 318–328.

    Article  ADS  Google Scholar 

  10. For a review see M. Beran, Statistical Continuum Theories, (New York, Interscience, 1968).

    MATH  Google Scholar 

  11. Z. Hashin and S. Shtrikman, “A Variational Approach to the Theory of the Effective Magnetic Permeability of Multiphase Materials”, J. Appl. Phys. 33 (1962) 3125–3131.

    Article  ADS  MATH  Google Scholar 

  12. S. Prager, “Diffusion in Inhomogeneous Media”, J. Chem. Phys. 33 (1960) 122–127.

    Article  ADS  MathSciNet  Google Scholar 

  13. J.C. Maxwell, A Treatise on Electricity and Magnetism, Vol. 1 (Oxford, Clarendon Press, first published 1873, 3rd edition 1891; reprinted 1954 by Dover, New York).

    MATH  Google Scholar 

  14. D.J. Jeffrey, “Conduction through a Random Suspension of Spheres”, Proc. Roy. Soc. Lond. A. 335 (1973) 355–367.

    Article  ADS  Google Scholar 

  15. See for example D.A. McQuarrie, Statistical Mechanics“ (New York, Harper and Row, N.Y. 1976), Chap. 13.

    MATH  Google Scholar 

  16. S. Prager, “Diffusion and Viscous Flow in Concentrated Suspensions”, Physica 29 (1963) 129.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Excellent discussions of reciprocal variation principles is to be found in J.L. Synge, The Hypercircle in Mathematical Physics, (Cambridge University Press, 1957) and in A.M. Arthurs, Complementary Variational Principles, (Oxford, Clarendon Press, London, 1970).

    Google Scholar 

  18. M.J. Beran, “Use of the Variational Approach to Get Bounds for the Effective Permittivity in Random Media”, Nuovo Cimento 38 (1965) 771–782.

    Article  Google Scholar 

  19. W.F. Brown, “Dielectric Constants, Permeabilities, and Conductivities of Random Media”, Trans. Soc. Rheology 9 part 1 (1965) 357–380; an interesting extension to non-symmetric media has been given by M.N. Miller, “Bounds for effective electrical, thermal, and magnetic properties of heterogeneous materials”, J. Math. Phys. 10 (1969) 1988–2004.

    Article  ADS  Google Scholar 

  20. H.L. Frisch, “Statistics of Random Media”, Trans. Soc. Rheology 9, part 1 (1965) 293–312

    Article  ADS  Google Scholar 

  21. H.L. Weissberg, “Effective Diffusion Coefficients in Porous Media”, J. Appl. Phys. 34 (1963) 2636–2639.

    Article  ADS  Google Scholar 

  22. H.L. Weissberg and S. Prager, “Viscosity of Concentrated Suspension”, Trans. Soc. Rheology 9, part 1 (1965) 321–338 (discusses the viscosity analog of the diffusion problem treated here).

    Article  ADS  Google Scholar 

  23. A.L. DeVera and W. Strieder, “Upper and Lower Bounds on the Effective Thermal Conductivities of a Random, Two-Phase Material”, J. Phys. Chem. 81 (1977) 1783–1790.

    Article  Google Scholar 

  24. S. Prager, “Improved Variational Bounds on Some Bulk Properties of a Two-Phase Random Medium”, J. Chem. Phys. 50 (1969) 4305–4312.

    Article  ADS  Google Scholar 

  25. D.J. Bergman, “Calculation of Bounds for Some Average Bulk Properties of Composite Materials”, Phys. Rev. B 14 (1976) 4304–4312.

    Article  ADS  Google Scholar 

  26. R.G. Gordon, “Error Bounds in Equilibrium Statistical Mechanics”, J. Math. Phys. 9 (1968) 655–663.

    Article  ADS  MATH  Google Scholar 

  27. G.A. Baker, Jr. Essentials of Pade Approximants, (New York, Academic Press, 1975).

    MATH  Google Scholar 

  28. D.J. Bergman, “Analytical Properties of the Complex Effective Dielectric Constant of a Composite Medium with Applications to the Derivation of Rigorous Bounds and to Percolation Problems”, in Electrical Transport and Optical Properties of Inhomogeneous Media, J.C. Garland and D.B. Tanner, eds., AIP Conference Proceedings No. 40 (New York, American Institute of Physics, 1978), pp. 46–62.

    Google Scholar 

  29. G. Woodbury and S. Prager, “Brownian Motion in Many-Particle Systems”, J. Chem. Phys. 38 (1963) 1446, and J. Am. Chem. Soc. 86, (1964) 3417.

    Article  ADS  Google Scholar 

  30. P. Debye and W. Hueckel, “Zur Theorie der Elektrolye II. Das Grenzgesetz fuer die Elektrolytische Leiffaehigkeit”, Physik. Z. 24 (1923) 185–206.

    Google Scholar 

  31. L. Onsager, “Zur Theorie der Elektrolyte”, Physik Z. 27 (1926) 388.

    MATH  Google Scholar 

  32. S. Prager, “Viscous Flow Through Porous Media”, Phys. Fluids 4 (1961) 1477–1482.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. H.L. Weissberg and S. Prager, “Viscous Flow Through Porous Media III. Upper Bounds on the Permeability for a Simple Random Geometry”, Phys. Fluids 13 (1970) 2958–2965.

    Article  ADS  MATH  Google Scholar 

  34. Z. Hashin and S. Shtrikman, “A variational approach to the theory of the elastic behaviour of multiphase materials”, J. Mech. Phys. Solids (1963) 127–140.

    Google Scholar 

  35. Z. Hashin, “Theory of mechanical behavior of heterogeneous media”, Appl. Mech. Rev. 17 (1964) 1–9.

    Google Scholar 

  36. R.A. Reck and S. Prager, “Diffusion-Controlled Quenching at Higher Quenches Concentrations”, J. Chem. Phys. 42 (1965) 3027–3032.

    Article  ADS  Google Scholar 

  37. W. Strieder and S. Prager, “Knudsen Flow Through a Porous Medium”, Physics of Fluids 11 (1968) 2544–2548, W. Strieder and C.Y. Shiau, “Surface Mobility in Transport Across a Porous Medium with Knudsen Diffusion in the Pores”, J. Colloid Interface Sci. 51 (1975) 152–161.

    Article  ADS  MATH  Google Scholar 

  38. F.G. Ho and W. Strieder, “A Variational Calculation of Effective Surface Diffusion Coefficient and Tortuosity”, Chem. Eng. Sci. 36 (1982) 253–258.

    Article  Google Scholar 

  39. J. Rotne and S. Prager, “Variational Treatment of Hydrodynamic Interaction in Polymers”, J. Chem. Phys. 50 (1969) 4831–4837.

    Article  ADS  Google Scholar 

  40. S. Prager, “Variational Bounds on the Intrinsic Viscosity”, J. Phys. Chem. 75 (1971) 72–78.

    Article  Google Scholar 

  41. M. Fixman, “Variational Bounds for Polymer Transport Coefficients”, J. Chem. Phys. 78 (1983) 1588–1593.

    Article  ADS  Google Scholar 

  42. M. Fixman, “Effect of Fluctuating Hydrodynamic Interaction”, J. Chem. Phys. 78 (1983) 1588–1593.

    Article  ADS  Google Scholar 

  43. G.H. Malone, T.F. Hutchinson and S. Prager, “Molecular Models for Permeation Through Thin Membranes”, J. Fluid Mech. 65 (1974) 753–767. See also the article by Malone, Suh and Prager in this volume.

    Article  ADS  MATH  Google Scholar 

  44. K. Schulgasser and Z. Hashin, “Bounds for Effective Permittivities of Lossy Dielectric Composites”, J. Appl. Phys. 47 (1976) 424–427.

    Article  ADS  Google Scholar 

  45. D.J. Bergman, “Exactly Solvable Microscopic Geometries and Rigorous Bounds for the Complex Dielectric Constnat of a Two-Component Composite Material”, Phys. Rev. Letters 44 1285–1287 (1980); see also ref. 20.

    Article  ADS  Google Scholar 

  46. W. Strieder and R. Aris, Variational Methods Applied to Problems of Diffusion and Reaction (Berlin, Springer Verlag, 1973).

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

B. D. Hughes B. W. Ninham

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag

About this paper

Cite this paper

Hughes, B.D., Prager, S. (1983). Random processes and random systems: An introduction. In: Hughes, B.D., Ninham, B.W. (eds) The Mathematics and Physics of Disordered Media: Percolation, Random Walk, Modeling, and Simulation. Lecture Notes in Mathematics, vol 1035. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0073255

Download citation

  • DOI: https://doi.org/10.1007/BFb0073255

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-12707-9

  • Online ISBN: 978-3-540-38693-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics