Quantization of models of quantum field theory with solitons

  • J. Kraśkiewicz
  • R. Rączka
Part II Quantization Procedures
Part of the Lecture Notes in Mathematics book series (LNM, volume 1037)


Excited State Momentum Represen Path Integral Representation Internal Symmetry Group Meson Cloud 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Raczka, R. i/ Lett. in Math. Phys. 5, 263 (1981), see also (1ii/) review article "Second Quantization of Boson-Fermion Field Theories with Solitons or Instantons" preprint I.S.A.S., Trieste 43/82/E.P.MathSciNetCrossRefGoogle Scholar
  2. [2]
    See e.g. Abers, E.S., and Lee, B.W., Phys. Reports 9, 1 (1973)CrossRefGoogle Scholar
  3. [3]
    Fröhlich, J., "On the triviality of λ ϕd4 theories and the approach to the critical point in d ⩾ 4 dimensions" preprint IHES/P/81/41, Bures-sur-Yvette.Google Scholar
  4. [4]
    Berestycki, H. and P.L. Lions in "Bifurcation Phenomena in Mathematical Physics and Realted Phenomena" p. 269, Editors Bardos, C. and Bessis, D., Reidel Publ. Company, Dordrecht (1980)CrossRefGoogle Scholar
  5. [5]
    Skorupski, Andrzej A., Reports on Math. Phys. 17, 161 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
  6. [6]
    Glimm, J., Jaffe, A., "Quantum Physics: a functional integral point of view" New York, Springer-Verlag, (1981)zbMATHGoogle Scholar
  7. [7]
    Jevicki, A., Nucl. Phys. B 117, 365 (1976), see also Raczka, R. and Roszkowski, L., "Green's Functions in Models of Quantum Field Theory with Ground State Solutions", in preparationGoogle Scholar
  8. [8]
    Albeverio, S., Høegh-Krohn, R.Y., "Mathematical Theory of Feynmann Path Integral", Lecture Notes in Math. V. 523 (1976)Google Scholar
  9. [9]
    Maslov, V., Fedorovik, M.V., "Semi-Classical Approximation", translated from russian by Niederle Y. and Tolar Y., Reidel Publ. Co., Dordrecht (1981)CrossRefGoogle Scholar
  10. [10]
    Dashen, R., Hasslacher, B., Neveu, A., Phys. Rev. D 10, 4114, 4130, (1974) ibid D 11, 3424 (1975)Google Scholar
  11. [11]
    Fedoriuk, M.V., "Saddle Point Method", Moscow (in russian)Google Scholar
  12. [12]
    See e.g. Itzykson, C., Zuber, J.B., "Quantum Field Theory", N.Y., Mc. Graw-Hill (1980)Google Scholar
  13. [13]
    Luther, A., Phys. Rev. B 14, 2153 (1976)Google Scholar
  14. [14]
    Review of Particle Properties, Rev. Mod. Phys. 52, 2, (1980)Google Scholar
  15. [15]
    Raczka, R., "Bethe-Salpeter Equation in Models of Field Theory with Solitons", in preparationGoogle Scholar
  16. [16]
    Raczka, R., and Kraskiewicz, J., "Trajectories of Boson and Fermion Excited states in Yukawa-like Models with Solitons", preprint I.S.A.S., Trieste, 1982.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1983

Authors and Affiliations

  • J. Kraśkiewicz
    • 1
  • R. Rączka
    • 1
  1. 1.Institute for Nuclear ResearchWarsawPoland

Personalised recommendations