Advertisement

The frobenius reciprocity theorem from a symplectic point of view

  • Victor Guillemin
  • Shlomo Sternberg
Part II Quantization Procedures
  • 347 Downloads
Part of the Lecture Notes in Mathematics book series (LNM, volume 1037)

Keywords

Symplectic Manifold Maximal Compact Subgroup Principal Series Geometric Quantization Hamiltonian Action 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. Atiyah, "Convexity and commuting Hamiltonians", Bull. London Math. Soc. 14 (1982), 1–15MathSciNetzbMATHCrossRefGoogle Scholar
  2. [2]
    L. Boutet de Monvel and V. Guillemin, "The Spectral Theory of Toeplitz Operators", Annals of Math. Studies no. 99, Princeton U. Press, Princeton N. J. (1981)Google Scholar
  3. [3]
    V. Guillemin and S. Sternberg, "On the equations of motion of a classical particle in a Yang-Mills field and the principle of general covariance", Hadronic Journal 1. (1978)Google Scholar
  4. [4]
    V. Guillemin and S. Sternberg, "Moments and reductions", to appear in the Proceedings of the Clausthal Summer School on Mathematical Physics (July 1980)Google Scholar
  5. [5]
    V. Guillemin and S. Sternberg, "The Marsden-Weinstein theorem and geometric quantization", Proceedings of Winter Research Institute on Geometric Quantization, Banff, 1981Google Scholar
  6. [6]
    V. Guillemin and S. Sternberg, "Geometric quantization and multicities of group representations", Invent. Math. 67 (1982), 515–538MathSciNetzbMATHCrossRefGoogle Scholar
  7. [7]
    V. Guillemin and S. Sternberg, "Homogeneous quantization and multiplicities of group representations", Jour.Funct.Anal. 47 (1980), 344–380MathSciNetCrossRefGoogle Scholar
  8. [8]
    V. Guillemin and S. Sternberg, "Convexity properties of the moment mapping", Invent. Math. 67 (1982), 491–513MathSciNetzbMATHCrossRefGoogle Scholar
  9. [9]
    V. Guillemin and S. Sternberg, "On the universal phase spaces for homogeneous principal bundles", Letters in Math. Phys. 6 (1982), 231–232MathSciNetzbMATHCrossRefGoogle Scholar
  10. [10]
    G. Heckman, "Projections of orbits and asymptotic behavior of multiplicities for compact Lie groups, (pre-print)Google Scholar
  11. [11]
    D. Kazhdan, B. Kostant and S. Sternberg, "Hamiltonian group actions and dynamical systems of Calogero type", Comm. in Pure and Appl. Math. 31, (1978), 481–507MathSciNetzbMATHCrossRefGoogle Scholar
  12. [12]
    B. Kostant, "Orbits, symplectic structures, and representation theory", Proc. US-Japan Seminar in Differential Geometry, Kyoto (1965), Nippon Hyoronsha, Tokyo (1966)Google Scholar
  13. [13]
    B. Kostant, "On convexity, the Weyl group and the Iwasawa decomposition", Ann. Sci. Ec. Norm. Sup. 6 (1973), 413–455MathSciNetzbMATHGoogle Scholar
  14. [14]
    G. Mackey, "Induced Representations of Groups and Quantum Mechanics, Benjamin, New York (1968)zbMATHGoogle Scholar
  15. [15]
    S. Paneitz, "Classification of invariant convex cones in simple Lie algebras", preprint UCB (1980)Google Scholar
  16. [16]
    S. Sternberg, "Symplectic homogeneous spaces", Trans. AMS, 212 (1975), 113–130MathSciNetzbMATHCrossRefGoogle Scholar
  17. [17]
    S. Sternberg, "Minimal coupling and the symplectic mechanics of a classical particle in the presence of a Yang-Mills field", Proc. Nat. Acad. Sci., USA (1977)Google Scholar
  18. [18]
    N. Wallach, "Harmonic Analysis on Homogeneous Spaces, Marcel Dekker, New York (1973)zbMATHGoogle Scholar
  19. [19]
    A. Weinstein, "Symplectic V-manifolds, periodic orbits of Hamiltonian systems and the volume of certain Riemannian manifolds", Comm. Pure Appl. Math. 30 (1977), 265–271MathSciNetzbMATHCrossRefGoogle Scholar
  20. [20]
    V. Guillemin and S. Sternberg, "A universal phase space for particles in Yang-Mills fields", Letters in Math. Physics 2 (1978), 417–420CrossRefGoogle Scholar
  21. [21]
    N. Woodhouse, "Geometric Quantization", Clarendon Press, Oxford (1980)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1983

Authors and Affiliations

  • Victor Guillemin
    • 1
  • Shlomo Sternberg
    • 2
  1. 1.Dept. of MathematicsM.I.T.CambridgeUSA
  2. 2.Dept. of Maths.Harvard UniversityCambridgeUSA

Personalised recommendations