Advertisement

Number Theory pp 196-213 | Cite as

Notes on elliptic K3 surfaces

  • William L. Hoyt
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1240)

Keywords

Modular Form Elliptic Curve Hodge Structure Elliptic Surface Kummer Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    D. Cox and S. Zucker, Intersection numbers of sections of elliptic surfaces, Inv. M. 53 (1979), pp. 1–44.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    Y. Endo, Parabolic cohomologies and generalized cusp forms of weight three associated to Weierstrass equations over function fields, Thesis, Temple University, 1985.Google Scholar
  3. [3]
    W. Hoyt, On surfaces associated with an indefinite ternary lattice, LNM 1135, Springer 1985, 197–210.Google Scholar
  4. [4]
    H. Inose, On certain Kummer surfaces which can be realized as non-singular quartics in ℙ3, J. Fac. Sci., Univ. of Tokyo, 23 (1976), pp. 545–560.MathSciNetzbMATHGoogle Scholar
  5. [5]
    _____, Defining equations of singular K3 surfaces and a notion of isogeny, Int. Symp. on Algebraic Geometry, Kyoto, 1977, pp. 495–502.Google Scholar
  6. [6]
    K. Kodaira, On compact analytic surfaces II, Ann. of M., 77 (1963), pp. 563–626.CrossRefzbMATHGoogle Scholar
  7. [7]
    D. Morrison, On K3 surfaces with large Picard number, Inv. M. 75 (1984), pp. 105–121.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    U. Schmickler-Hirzebruch, Elliptische Flachen uber ℙ1(ℂ) mit drei ausnhmefasern und die hypergeometrische Differentialgleichung, Schriftenreihe Math. Inst. Univ. Munster, 1985.Google Scholar
  9. [9]
    G. Shimura, Sur les integrales attachees aux formes automorphes, JMS Japan 11 (1959), 291–311.MathSciNetGoogle Scholar
  10. [10]
    T. Shioda, Algebraic cycles on certain K3 surfaces in characteristic p, in Manifolds-Tokyo 1973, Univ. of Tokyo Press 1975, pp. 357–364.Google Scholar
  11. [11]
    T. Shioda and H. Inose, On singular K3 surfaces, Complex Analysis and Algebraic Geometry, Iwanami Shoten 1977, pp. 119–136.Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • William L. Hoyt
    • 1
  1. 1.Department of MathematicsRutgers UniversityNew Brunswick

Personalised recommendations