Advertisement

Number Theory pp 145-164 | Cite as

On the maximum of an exponential sum of the Möbius function

  • D. Hajela
  • B. Smith
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1240)

Abstract

We obtain upper estimates on the maximum of an exponential sum of the Möbius function, that is Open image in new window , under various assumptions. One result is that under the generalized Riemann hypothesis, given ε>0, we have for sufficiently large x, that Open image in new window

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. Bourgain, Preprint.Google Scholar
  2. [2]
    H. Davenport, On Some Infinite Series Involving Arithmetical Functions (II), Quart. J. Math., 8 (1937), 313–320.CrossRefzbMATHGoogle Scholar
  3. [3]
    J. Friedlander, Selberg's Formula and Siegel's Zero, Recent Progress in Analytic Number Theory, Volume 1, Academic Press (1981).Google Scholar
  4. [4]
    G. Hardy, E. Wright, The Theory of Numbers, Oxford Press (1975).Google Scholar
  5. [5]
    D. Heath-Brown, Hybrid Bounds for L-functions: a q-analogue of Van der Corput's Method and a t-analogue of Burgess' Method, Recent Progress in Analytic Number Theory, Volume 1, Academic Press (1981).Google Scholar
  6. [6]
    A. Odlyzko, H. J. J. te Riele, Disproof of the Mertens Conjecture, to appear.Google Scholar
  7. [7]
    E. Titchmarsh, The Theory of the Riemann Zeta Function, Oxford Press (1951).Google Scholar
  8. [8]
    R. Vaughan, The Hardy-Littlewood Method, Cambridge Press (1981).Google Scholar
  9. [9]
    A. Walfisz, Weylsche Exponentialsummen in der Neueren Zahlentheorie, Berlin (1963).Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • D. Hajela
    • 1
  • B. Smith
    • 2
  1. 1.Bell Communications ResearchMorristown
  2. 2.California Institute of TechnologyPasadena

Personalised recommendations