On the number of false witnesses for a composite number

  • Paul Erdös
  • Carl Pomerance
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1240)


Maximal Order Counting Function Hungarian Academy Testing Algorithm Asymptotic Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R. Baillie and S.S. Wagstaff, Jr., Lucas pseudoprimes, Math. Comp. 35 (1980), 1391–1417.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    A. Balog, p+a without large prime factors, Séminaire de Théorie des Nombres de Bordeaux (1983–84), no. 31.Google Scholar
  3. [3]
    L. Monier, Evaluation and comparison of two efficient probabilistic primality testing algorithms, Theoretical Comp. Sci. 12 (1980), 97–108.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    C. Pomerance, Recent developments in primality testing, Math. Intelligencer 3 (1981), 97–105.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    C. Pomerance, On the distribution of pseudoprimes, Math. Comp. 37 (1981), 587–593.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    C. Pomerance, A new lower bound for the pseudoprime counting function, Illinois J. Math. 26 (1982), 4–9.MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Paul Erdös
    • 1
  • Carl Pomerance
    • 2
  1. 1.Mathematical Institute of the Hungarian Academy of SciencesBudapestHungary
  2. 2.University of GeorgiaAthensUSA

Personalised recommendations