Advertisement

Successive diagonal projections of Hilbert modular functions

  • Harvey Cohn
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1240)

Keywords

Modular Form Modular Function Hilbert Modular Form Trace Symbol Descent Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [1]
    H. Bauer, Numerische Bestimmung der Klassenzahlen reeler zyklischer Zahlkörper, J. of Number Theory 1(1969) 161–162.CrossRefzbMATHGoogle Scholar
  2. [2]
    H. Cohn, An explicit modular equation in two variables and Hilbert's twelfth problem, Math. of Comput. 38(1982) 227–236.zbMATHGoogle Scholar
  3. [3]
    H. Cohn, Some examples of Weber-Hecke ring class field theory, Math. Ann. 265(1983) 83–100.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    H. Cohn, Representation of a prime as a sum of squares in a tower of fields, J. Reine Angew. Math. 361 (to appear).Google Scholar
  5. [5]
    H. Cohn and J. Deutsch, Use of a computer scan to prove that Q(√2+√2) and Q(√3+√3) are euclidean, Math. of Comput. 46 (to appear).Google Scholar
  6. [6]
    R. Fricke, Lehrbuch der Algebra III (Algebraische Zahlen), Braunschweig, Vieweg, 1928.zbMATHGoogle Scholar
  7. [7]
    K.-B. Gundlach, Zusammenhänge zwischen Modulformen in einer und in zwei Variablen, Nachr. Akad. Wiss. Göttingen, II, Math.-Phys. Kl. (1965) 47–88.Google Scholar
  8. [8]
    K.-B. Gundlach, Die Bestimmung der Funktionen zu einigen Hilbertschen Modulgruppen, J. Reine Angew. Math. 220(1965) 109–153.MathSciNetzbMATHGoogle Scholar
  9. [9]
    K.-B. Gundlach, On the representation of a number as a sum of squares, Glasgow Math. J. 19(1978) 173–197.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    F. Hirzebruch, The ring of Hilbert modular forms of small discriminant, Modular functions of one variable VI. Springer Lecture Notes in Mathematics, Vol. 627, pp 287–323, 1977.MathSciNetCrossRefGoogle Scholar
  11. [11]
    C. Meyer, Die Berechnung der Klassenzahl abelscher Korper uber quadratischen Zahlkorpern, Berlin, Akad. Verlag, 1957.zbMATHGoogle Scholar
  12. [12]
    R. Muller, Hilbertsche Modulformen und Modulfunktionen zu Q(√8), Math. Ann. 266(1983) 83–103.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    S. Nagaoka, On Hilbert modular forms III, Proc. Japan Acad. 59(1983) 346–348.MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    C. Pohl, G. Rosenberger, and A. Schoofs, Arithmetische Eigenschaften von Eisenstein-Reihen zu den Hecke-Gruppen G(√2) und G(√3), Abh. Math. Sem. Univ. Hamburg 54(1984), 49–68.MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    C.L. Siegel, Lectures on advanced analytic number theory, Bombay, Tata Institute, 1961.Google Scholar
  16. [16]
    H. Weber, Elliptische Funktionen und algebraische Zahlen, Braunschweig, Vieweg, 1891.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Harvey Cohn
    • 1
  1. 1.Department of MathematicsThe City College of New YorkNew York

Personalised recommendations