Skip to main content

Computer assisted number theory with applications

  • Conference paper
  • First Online:
Number Theory

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 1240))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 46.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Fuchs, Gesammelte Mathematische Werke, bd 1–3, Berlin, 1900–1906.

    Google Scholar 

  2. A. R. Forsyth, Theory of differential equations, v. I–VI, Dover reprint, 1959.

    Google Scholar 

  3. F.G. Frobenius, Gesammelte Abhandlungen, Springer, N.Y., 1968, Bd. 1.

    Google Scholar 

  4. H.T. Kung, J.F. Traub, All algebraic functions can be computed fast, J. Assoc. Comp. Mech. 25 (1978), 245–260.

    Article  MathSciNet  MATH  Google Scholar 

  5. I.L. Ince, Ordinary differential equations, Dover, 1959.

    Google Scholar 

  6. D.E. Kunth, The Art of Computer Programming, v. 2, 2nd ed., Addison-Wesley, 1981.

    Google Scholar 

  7. J. Della Dora, E. Tournier, Formal Solutions of Differential Equations in the Neighborhood of Singular Points, in SYMSAC' 81 Proceedings (ed. P.S. Wang), Assoc. Computer Machinery, 1981, pp. 25–30.

    Google Scholar 

  8. D.B. Chudnovsky, G.V. Chudnovsky, On expansion of algebraic functions in power and Puiseux series, IBM Research Report, RC11365, 9/13/85, 96 pp.

    Google Scholar 

  9. R.P. Brent, H.T. Kung, Fast algorithms for manipulating formal power series, J. Assoc. Comp. Machinery, 25 (1978), 581–595.

    Article  MathSciNet  MATH  Google Scholar 

  10. E. Hille, Ordinary differential equations in the complex domain, Wiley, N.Y., 1976.

    MATH  Google Scholar 

  11. B.C. Carlson, Special Functions of Applied Mathematics, Academic Press, N.Y., 1977.

    MATH  Google Scholar 

  12. R.P. Brent, Multiple-precision zero-finding method and the complexity of elementary function evaluation, in Analytic Computational Complexity (ed. by J.F. Traub), Academic Press, 1976, pp. 151–176.

    Google Scholar 

  13. D.V. Chudnovsky, G.V. Chudnovsky, Padé and rational approximations to systems of functions and their arithmetic applications, Lecture Notes Math., v. 1052, Springer, N.Y., 1984, 37–84.

    MATH  Google Scholar 

  14. D.V. Chudnovsky, G.V. Chudnovsky, Padé approximations to solutions of linear differential equations and applications to diophantine analysis, ibid., 85–167.

    MATH  Google Scholar 

  15. N.H. Abel, Sur l'intégration de la formule différentielle ρ·dx/√R, R and ρ êtant des fonctions entières, J. Reine Angew, Math., 1 (1826), 185–221, = Oeuvres, v. 1, 104–144.

    Article  MathSciNet  Google Scholar 

  16. F.G. Frobenius, L. Stickelberger, Über die addition und multiplication der elliptischen functionen, ibid., 88 (1880), 146–184.

    MathSciNet  MATH  Google Scholar 

  17. H.F. Baker, Note on the foregoing paper "Commutative differential operators", by J.L. Burchnall and J.W. Chaundy, Proc. Roy. Soc. London, A., 118 (1928), 584–593.

    Article  MATH  Google Scholar 

  18. G.V. Chudnovsky, Padé approximations and the Rieman monodromy problems, in Bifurcation Phenomena in Mathematical Physics, D. Reidel Publishing Company, Boston, 1980, 448–510.

    Google Scholar 

  19. D.V. Chudnovsky, Riemann monodromy problem, isomonodromy deformation equations and completely integrable systems, ibid., 385–447.

    Chapter  Google Scholar 

  20. R.T. Baumel, J.L. Gammel, J. Nuttall, Asymptotic form of Hermite-Padé polynomials, IMA Journal of Appl. Math., 27 (1981), 335–357.

    Article  MathSciNet  MATH  Google Scholar 

  21. D.V. Chudnovsky, G.V. Chudnovsky, Sequences of numbers generated by addition in formal groups and new primality and factorization test, IBM Research Report, RC 11262, 7/12/85, 1985, 102 pp., Advances in Applied Mathematics, 1986 (to appear).

    Google Scholar 

  22. G. Andrews, Physics, Ramanujan and SCRATCHPAD, in Proceedings of the conference "Computer Algebra as a Tool of Research in Mathematics and Physics" (to appear).

    Google Scholar 

  23. Parallel Processing Systems (ed. by D. Evans), Cambridge Univ. Press, 1982.

    Google Scholar 

  24. H. vonKoch, Un théorem sur les intégrales irrégulieres des equations differentielles linéaires et son application du problème de l'integration, Ark. för Math., 13 (1918), No. 15, 1–18.

    Google Scholar 

  25. F.W.J. Olver, Asymptotics and Special Functions, Academic Press, 1974.

    Google Scholar 

  26. H. Poincaré, Sur le déterminant de Hill, Bull. Astron., 17 (1900), 134–143 = Oeuvres, v. 8, 383–393, Paris, 1952.

    Google Scholar 

  27. M. Hazewinkel, Formal Groups and Applications, Academic Press, 1978.

    Google Scholar 

  28. E.R. Kolchin, Differential Algebra and Algebraic Groups, Academic Press, N.Y., 1973.

    MATH  Google Scholar 

  29. B. Riemann, Oeuvres Mathématiques, Blanchard, Paris, 1966, 353–363.

    Google Scholar 

  30. H. Poincaré, Sur les groupes des équations linéaires, Acta. Math., 5 (1884), 240–278.

    Article  Google Scholar 

  31. J.A. Lappo-Danilevsky, Mémoires sur la Théorie des Systèmes des Équations Différentielles Linéaires, Chelsea, 1953.

    Google Scholar 

  32. The Riemann Problem, Complete Integrability and Arithmetic Applications, ed. by D.V. Chudnovsky and G.V. Chudnovsky, Lecture Notes in Math., v. 925, Springer, N.Y., 1982.

    MATH  Google Scholar 

  33. P. Deligne, Equations Differentielles à Point Singulier Reguliers, Lecture Notes in Math., v. 163, Springer, N.Y., 1970.

    Book  MATH  Google Scholar 

  34. A. Hurwitz, Über Riemannshe flachen mit gegeben verzweigung-spunten, Math. Ann., 39 (1891), 1–61.

    Article  MathSciNet  Google Scholar 

  35. M. Fried, Fields of definition of function fields and Hurwitz families. Groups as Galois groups, Comm. Algebra, 5(1977), 17–82.

    Article  MATH  Google Scholar 

  36. G.V. Belyi, On Galois extensions of a maximal cyclotomic field, field., Math. USSR Izvestija 14 (1980), 247–256.

    Article  MathSciNet  MATH  Google Scholar 

  37. B.N. Matzat, Konstruktion von zahl-and funktionen-körpern mit vorgegebener Galoisgruppe, J. Reine Angew. Math., 349 (1984), 179–220.

    MathSciNet  MATH  Google Scholar 

  38. J.G. Thompson, Some finite groups which appear as Gal(L/K), where K ≤ θ(μn), J. Algebra, 89 (1984), 437–499.

    Article  MathSciNet  MATH  Google Scholar 

  39. B.H. Matzat, Zum einbettungsproblem der algebraischen zahlentheorie mit nicht abelschem kern, Invent Math., 80 (1985), 365–374.

    Article  MathSciNet  MATH  Google Scholar 

  40. G.V. Belyi, On extensions of the maximal cyclotomic field having a given classical Galois group, J. Reine Angew, Math., 341(1983), 147–156.

    MathSciNet  MATH  Google Scholar 

  41. Proceedings of the Rutgers Group Theory Year, 1983–84 (Ed. by M. Aschbacher, D. Gorenstein, R. Lyons, M. O'Nan, C. Sims, W. Feit), Cambridge Univ. Press, 1984.

    Google Scholar 

  42. N.G. Chebotareff, Theory of Algebraic Functions, Gostechizdat, 1968 (Russian).

    Google Scholar 

  43. H.F. Baker, Abel's Theorem and the Allied Theory Including The Theory of Theta Functions, Cambridge, 1897.

    Google Scholar 

  44. J.H. Davenport, On the Integration of Algebraic Functions, Lecture Notes Computer Sci. v. 102, Springer, N.Y. (1981).

    MATH  Google Scholar 

  45. B. M. Trager, Integration of Algebraic Functions, Ph.D. Thesis, M.I.T. 1984.

    Google Scholar 

  46. D.V. Chudnovsky, G.V. Chudnovsky, Applications of Padé Approximations to the Grothendieck conjecture on linear differential equations, Lecture Notes in Math., Springer, v. 1135, 1985, N.Y., 52–100.

    MATH  Google Scholar 

  47. D.V. Chudnovsky, S.V. Chudnovsky, The Grothendieck conjecture and Padé approximations, Proc. Japan Acad., 61A (1985), 87–90.

    Article  MathSciNet  MATH  Google Scholar 

  48. F. Baldassarri, B.M. Dwork, On second order linear differential equations with algebraic solutions, Amer. J. Math. 101 (1970), 42–76.

    Article  MathSciNet  MATH  Google Scholar 

  49. D.V. Chudnovsky, G.V. Chudnovsky, p-adic properties of linear differential equations and Abelian integrals, IBM Research Report RC10645, 7/26/84.

    Google Scholar 

  50. S.V. Kowalewski, Über die reduction einer bestimintea classe Abel'schen integrale 3-en ranges auf elliptische integrale, Acta Math., 4 (1884), 393–414.

    Article  MathSciNet  Google Scholar 

  51. D.V. Chudnovsky, Meromorphic solutions of nonlinear partial differential equations and many particle completely integrable systems, J. Math. Phys., 20 (1970), 2416–2422.

    Article  MathSciNet  MATH  Google Scholar 

  52. D.V. Chudnovsky, G.V. Chudnovsky, Pade approximations and diophantine geometry, Proc. Natl. Acad. Sci. U.S.A. 82 (1985), 2212–2216.

    Article  MathSciNet  MATH  Google Scholar 

  53. J.-P. Serre, Quelques applications du théoreme de densité de Chebotarev, IHES Publ. Math., 54 (1981), 323–401.

    Article  MATH  Google Scholar 

  54. G. Faltings, Endlichkeitssätze für abelsche varietäten über zahlkörpern, Inv. Math., 73 (1983), 349–366.

    Article  MathSciNet  Google Scholar 

  55. T. Honda, On the theory of commutative formal groups, J. Math. Soc. Japan, 22 (1970), 213–246.

    Article  MathSciNet  MATH  Google Scholar 

  56. M. Ward, Memoir on elliptic divisibility sequences, Amer. J. Math., 70 (1948), 31–74.

    Article  MathSciNet  MATH  Google Scholar 

  57. S. Lichtenbaum, On p-adic L-functions associated to elliptic curves, Inv. Math., 56 (1980), 19–55.

    Article  MathSciNet  MATH  Google Scholar 

  58. F. Hirzebruch, Topological Methods in Algebraic Geometry, Springer, 1966.

    Google Scholar 

  59. P.S. Landweber, R.E. Stong, Circle actions on spin manifolds and characteristic numbers (to appear).

    Google Scholar 

  60. D.V. Chudnovsky, G.V. Chudnovsky, Elliptic modular functions and elliptic genera (to appear).

    Google Scholar 

  61. B. Dwork, Arithmetic theory of differential equations, Symposia Mathematica, v. 24, Academic Press, N.Y., 1981, 225–243.

    Google Scholar 

  62. D.V. Chudnovsky, G.V. Chudnovsky, Applications of Padé approximations to diophantine inequalities in values of G-functions, Lecture Notes in Math., Springer, v. 1135, 1985, pp. 9–51.

    Article  MathSciNet  MATH  Google Scholar 

  63. G. Shimura, On some problems of algebraicity,, Proceeding Intern. Congress of Math., Helsinki, 1978, v. 1, 373–379.

    MathSciNet  Google Scholar 

  64. G. V Chudnovsky, Algebraic independence of values of exponential and elliptic functions, ibid., 339–355.

    MathSciNet  Google Scholar 

  65. P. Deligne, Valeurs de fonctions L et périodes d'intégrales, Proc. Symp. Pure Math., v. 33, part 2, AMS, 1979, 313–346.

    Article  MathSciNet  Google Scholar 

  66. R. Fricke, F. Klein, Vorlesungen über die theorie der automorphen functionen, 2v., Teubner, 1926.

    Google Scholar 

  67. D.V. Chudnovsky, G.V. Chudnovsky, A random walk in higher arithmetic, Adv. Appl. Math., 7 (1986), 101–122.

    Article  MathSciNet  MATH  Google Scholar 

  68. S. Lang, Introduction to transcendental numbers, Addison-Wesley, 1966.

    Google Scholar 

  69. G.V. Chudnovsky, Explicit construction of auxiliary functions for transcendental numbers, Lecture Notes Math., v. 751, Springer, N.Y. 1979, 45–69.

    Google Scholar 

  70. H. Padé, Oeuvres, Blanchard, Paris, 1984.

    MATH  Google Scholar 

  71. N.P. Erugin, Lappo-Danilevsky method in the Theory of Differential Equations, Leningrad Univ. Press, 1956.

    Google Scholar 

  72. W. Magnus, Monodromy groups and Hill's equation, Comm. Pure Appl. Math., 29 (1976), 701–716.

    Article  MathSciNet  MATH  Google Scholar 

  73. F.M. Arscott, Periodic Differential Equations, Macmillan, N.Y., 1964.

    MATH  Google Scholar 

  74. L. Keen, H.E. Rauch, A.T. Vasques, Moduli of punctured tori and the accessory parameter of Lamé's equations, Bull. Amer. Math. Soc., 255 (1979), 201–230.

    MATH  Google Scholar 

  75. J.L. Ince, Periodic Lamé functions, Proc. Edinb. Math. Soc., 41 (1923), 94–100 and 60 (1939), 47–63.

    Google Scholar 

  76. P.L. Chebichef, Sur l'integration de la différentielle (X+A) dx/√x4+ax3+bx2+cx+d, Bull. Acad. Impériale de Saint-Pétersbourg, 3 (1861), 1–12.

    Google Scholar 

  77. E.G.C. Poole, Introduction to the Theory of Linear Differential Equations, Oxford, 1936.

    Google Scholar 

  78. J. Meixner, Orthogonal polynomials in the theory of Mathieu functions, I, II, Arch. Math. 36 (1981), 162–167; 39 (1982), 46–50.

    MathSciNet  MATH  Google Scholar 

  79. L.A. Takhtadjan, P.G. Zograf, The Liouville equation action—the generating function for accessory parameters, Funct. Anal., 19 (1985), 67–68.

    Article  Google Scholar 

  80. O. Perron, Die Lehre von den Kettenbrüchen, Teubner, 1929.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

David V. Chudnovsky Gregory V. Chudnovsky Harvey Cohn Melvyn B. Nathanson

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag

About this paper

Cite this paper

Chudnovsky, D.V., Chudnovsky, G.V. (1987). Computer assisted number theory with applications. In: Chudnovsky, D.V., Chudnovsky, G.V., Cohn, H., Nathanson, M.B. (eds) Number Theory. Lecture Notes in Mathematics, vol 1240. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0072972

Download citation

  • DOI: https://doi.org/10.1007/BFb0072972

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-17669-5

  • Online ISBN: 978-3-540-47756-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics