Skip to main content

Polynomial iteration for nonsymmetric indefinite linear systems

  • Conference paper
  • First Online:
Numerical Analysis

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 1230))

Abstract

We examine iterative methods for solving sparse nonsymmetric indefinite systems of linear equations. Methods considered include a new adaptive method based on polynomials that satisfy an optimality condition in the Chebyshev norm, the conjugate gradient-like method GMRES, and the conjugate gradient method applied to the normal equations. Numerical experiments on several non-self-adjoint indefinite elliptic boundary value problems suggest that none of these methods is dramatically superior to the others. Their performance in solving moderately difficult problems is satisfactory, but for harder problems their convergence is slow.

The work presented in this paper was supported by the U.S. Office of Naval Research under contract N00014-82-K-0814, by the U.S. Army Research Office under contract DAAG-83-0177 and by the Naval Underwater Systems Center Independent Research Project A70209.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 46.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Bayliss, C.I. Goldstein and E. Turkel, An iterative method for the Helmholtz equation, Journal of Computational Physics, 49 (1983), pp. 443–457.

    Article  MathSciNet  MATH  Google Scholar 

  2. J. H. Bramble and J. E. Pasciak, Preconditioned iterative methods for nonselfadjoint or indefinite elliptic boundary value problems, H. Kardestuncer ed., Unification of Finite Element Methods, Elsevier Science Publishers, New York, 1984, pp. 167–184.

    Chapter  Google Scholar 

  3. R. Chandra, Conjugate Gradient Methods for Partial Differential Equations, Ph.D. Thesis, Department of Computer Science, Yale University, 1978. Also available as Technical Report 129.

    Google Scholar 

  4. C. de Boor and J. R. Rice, Extremal polynomials with application to Richardson iteration for indefinite linear systems, SIAM J. Sci. Stat. Comput., 3 (1982), pp. 47–57.

    Article  MathSciNet  MATH  Google Scholar 

  5. H. C. Elman, Iterative Methods for Large, Sparse, Nonsymmetric Systems of Linear Equations, Ph.D. Thesis, Department of Computer Science, Yale University, 1982. Also available as Technical Report 229.

    Google Scholar 

  6. H. C. Elman, Y. Saad and P. E. Saylor, A Hybrid Chebyshev Krylov-Subspace Method for Nonsymmetric Systems of Linear Equations, Technical Report YALEU/DCS/TR-301, Yale University Department of Computer Science, 1984. To appear in SIAM J. Sci. Stat. Comput.

    Google Scholar 

  7. R. Fletcher, Conjugate gradient methods for indefinite systems, G. A. Watson ed., Numerical Analysis Dundee 1975, Springer-Verlag, New York, 1976, pp. 73–89.

    Google Scholar 

  8. L. A. Hageman and D. M. Young, Applied Iterative Methods, Academic Press, New York, 1981.

    MATH  Google Scholar 

  9. M. R. Hestenes and E. Stiefel, Methods of conjugate gradients for solving linear systems, Journal of Research of the National Bureau of Standards, 49 (1952), pp. 409–435.

    Article  MathSciNet  MATH  Google Scholar 

  10. E. Hille, Volume II: Analytic Function Theory, Blaisdell, New York, 1962.

    MATH  Google Scholar 

  11. K. Ito, An Iterative Method for Indefinite Systems of Linear Equations, Technical Report NAS1-17070, ICASE, April 1984.

    Google Scholar 

  12. T. Kerkhoven, On the Choice of Coordinates for Semiconductor Simulation, Technical Report RR-350, Yale University Department of Computer Science, 1984.

    Google Scholar 

  13. T. A. Manteuffel, Adaptive procedure for estimation of parameters for the nonsymmetric Tchebychev iteration, Numer. Math., 31 (1978), pp. 187–208.

    Article  MathSciNet  MATH  Google Scholar 

  14. —, The Tchebychev iteration for nonsymmetric linear systems, Numer. Math., 28 (1977), pp. 307–327.

    Article  MathSciNet  MATH  Google Scholar 

  15. J. A. Meijerink and H. A. van der Vorst, An iterative solution method for linear systems of which the coefficient matrix is a symmetric M-matrix, Math. Comp., 31 (1977), pp. 148–162.

    MathSciNet  MATH  Google Scholar 

  16. C. C. Paige and M. A. Sanders, LSQR: An algorithm for sparse linear equations and sparse least squares, ACM Trans. on Math. Software, 8 (1982), pp. 43–71.

    Article  MathSciNet  MATH  Google Scholar 

  17. C. C. Paige and M. A. Saunders, Solution of sparse indefinite systems of linear equations, SIAM J. Numer. Anal., 12 (1975), pp. 617–629.

    Article  MathSciNet  MATH  Google Scholar 

  18. Y. Saad, Iterative solution of indefinite symmetric systems by methods using orthogonal polynomials over two disjoint intervals, SIAM J. Numer. Anal., 20 (1983), pp. 784–811.

    Article  MathSciNet  MATH  Google Scholar 

  19. —, Least squares polynomials in the complex plane with applications to solving sparse nonsymmetric matric problems, Technical Report 276, Yale University Department of Computer Science, June 1983.

    Google Scholar 

  20. Y. Saad and M. H. Schultz, GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems, Technical Report 254, Yale University Department of Computer Science, 1983.

    Google Scholar 

  21. G. D. Smith, Numerical Solution of Partial Differential Equations: Finite Difference Methods, Oxford University Press, New York, 1978.

    MATH  Google Scholar 

  22. D. C. Smolarski and P. E. Saylor, Optimum Parameters for the Solution of Linear Equations by Richardson's Iteration, May 1982. Unpublished manuscript.

    Google Scholar 

  23. R. L. Streit, An Algorithm for the Solution of Systems of Complex Linear Equations in the l ∞ Norm with Constraints on the Unknowns, 1983. Submitted to ACM Trans. on Math. Software.

    Google Scholar 

  24. —, Solution of Systems of Complex Linear Equations in the l ∞ Norm with Constraints on the Unknowns, Technical Report 83-3, Systems Optimization Laboratory, Stanford University Department of Operations Research, 1983. To appear in SIAM J. Sci. Stat. Comput.

    Google Scholar 

  25. P. N. Swarztrauber, The methods of cyclic reduction, Fourier analysis and the FACR algorithm for the discrete solution of Poisson's equation on a rectangle, SIAM Review, 19 (1977), pp. 490–501.

    Article  MathSciNet  MATH  Google Scholar 

  26. M. A. Saunders, H. D. Simon, and E. L. Yip, Two Conjugate-Gradient-Type Methods for Sparse Unsymmetric Linear Equations, Technical Report ETA-TR-18, Boeing Computer Services, June 1984.

    Google Scholar 

  27. J. H. Wilkinson, The Algebraic Eigenvalue Problem, Oxford University Press, London, 1965.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jean-Pierre Hennart

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag

About this paper

Cite this paper

Elman, H.C., Streit, R.L. (1986). Polynomial iteration for nonsymmetric indefinite linear systems. In: Hennart, JP. (eds) Numerical Analysis. Lecture Notes in Mathematics, vol 1230. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0072674

Download citation

  • DOI: https://doi.org/10.1007/BFb0072674

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-17200-0

  • Online ISBN: 978-3-540-47379-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics