Advertisement

Multigrid method in subspace and domain partitioning in the discrete solution of elliptic problems

  • Panayot Vassilevski
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1228)

Keywords

Elliptic Problem Conjugate Gradient Method Multigrid Method Discrete Problem USSR Acad 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bachvalov, N.S. and M.Yu. Orechov: On fast manners for solving Poisson's equation. USSR J. Comput. Math. and Math. Physics, 22(1982) 1386–1392. In Russian.Google Scholar
  2. 2.
    Bank, R.E. and C.C. Douglas: Sharp estimates for multigrid rates of convergence with general smoothing and acceleration. Research Report YALEU/DCS/RR-277.Google Scholar
  3. 3.
    Bjorstad, P.E. and O.B. Widlund: Iterative methods for the solution of elliptic problems on regions partitioned into substructures. Technical Report #136, 1984, Computer Science Department, New York University.Google Scholar
  4. 4.
    Chandra, R.: Conjugate gradient methods for PDEs. Research Report # 129, Department of Computer Science, Yale University.Google Scholar
  5. 5.
    Concus, P., G.H. Golub and D.P. O'Leary: A generalized conjugate gradient method for the numerical solution of elliptic partial diffe rential equations, in: J.R. Bunch and D.J. Rose, eds., Sparse Matrix Computations, pp. 309–332, New York, Academic Press, 1976.Google Scholar
  6. 6.
    Dryja, M.: A capacitance matrix method for Dirichlet problem on polygon region. Numer. Math. 39(1982), 51–64.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Dryja, M.: A finite element — capacitance matrix method for elliptic problems on regions partitioned into subregions. Numer. Math. 44(1984), 153–168.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Glowinski, R., J. Periaux, and Q.V. Dinh: Domain decomposition methods for nonlinear problems in fluid dynamics. Rapports de Recherche No 147, 1982, INRIA Centre de Rocquencourt.Google Scholar
  9. 9.
    Hackbusch, W.: Multi — grid convergence theory, in: W. Hackbusch and U. Trottenberg, eds., Multigrid methods. Lect. Notes Math. # 960, Springer-Verlag, Berlin-Heidelberg-New York, 1982, pp. 177–219.CrossRefGoogle Scholar
  10. 10.
    Hackbusch, W.: Local defect correction method and domain decomposition technique. Computing, Suppl. 5 (1984), 89–113.Google Scholar
  11. 11.
    Kuznetsov, Yu.A.: Block — relaxation methods in subspace, their optimization and applications, in: Variational — difference methods in mathematical physics, Sibirian Branch of USSR Acad. Sci., Computing center, Novosibirsk, 1978, pp. 178–212. In Russian.Google Scholar
  12. 12.
    Kuznetsov, Yu.A.: Computational methods in subspaces, in: Computational processes and systems, vol. 2, Nauka, Moscow, 1985, pp. 265–350. In Russian.Google Scholar
  13. 13.
    Lebedev, V.I., and V.I. Agoshkov: Poincare — Steklov operators and their applications in Analysis. Department of Computational Math., USSR Acad. Sci., Moscow, 1983. In Russian.zbMATHGoogle Scholar
  14. 14.
    Lions, J.L. and E. Magenes: Nonhomogeneous boundary value problems and applications, I, Springer, NY, 1972.CrossRefzbMATHGoogle Scholar
  15. 15.
    Nepomnyashtchich, S.V.: On application of bordering method to mixed boundary value problem for elliptic equations and on network norms in {ie314-1}(S). Preprint 106, 1984, Computing Center, Sibirian Branch of USSR Acad. Sci., Novosibirsk. In Russian.Google Scholar
  16. 16.
    Stuben, K. and U. Trottenberg: Multigrid methods: Fundamental algorithms, model problem alalysis and applications, in: W. Hackbusch and U. Trottenberg, eds., Multigrid methods. Lect. Notes Math. # 960 Springer-Verlag, Berlin-Heidelberg-New York, 1982, pp. 1–176.CrossRefGoogle Scholar
  17. 17.
    Vassilevski, P.S.: Numerical solution of Poisson's equation on regions partitioned into substructures, I: Derivation and properties of the discrete problem. Compt.Rend.Bulg.Acad.Sci. 39(1986), in pressGoogle Scholar
  18. 18.
    Vassilevski, P.S.: Numerical solution of Poisson's equation on regions partitioned into substructures, II: Convergence of the method Compt.Rend.Bulg.Acad.Sci. 39(1986) No3, in press.Google Scholar
  19. 19.
    Vassilevski, P.S.: Numerical solution of axially symmetric Poisson equation on regions partitioned into substructures. Proceedings of the Third Conference on Differential equations and applications, held at Russe, June 30–July 6, 1985, Bulgaria. In press.Google Scholar
  20. 20.
    Vassilevski, P.S.: Numerical solution of elliptic BVPs on regions partitioned into substructures. In preparation.Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • Panayot Vassilevski
    • 1
  1. 1.Bulgarian Academy of SciencesInstitute of MathematicsSofiaBulgaria

Personalised recommendations