Advertisement

On the combination of the multigrid method and conjugate gradients

  • Dietrich Braess
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1228)

Keywords

Conjugate Gradient Coarse Grid Conjugate Gradient Method Multigrid Method Biharmonic Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O. Axelsson and V.A. Barker. Finite Element Solution of Boundary Value Problems. Theory and Computation. Academic Press 1984Google Scholar
  2. 2.
    R.E. Bank and C.C. Douglas. Sharp estimates for multi-grid rates of convergence with general smoothing and acceleration. SIAM J. Numer.Anal. 22, 617–633 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    A. Behle and P.A. Forsyth,Jr. Multigrid solution of three dimensional problems with discontinuous coefficients. Appl.Math.Comp. 13, 229–240 (1983).MathSciNetCrossRefGoogle Scholar
  4. 4.
    D. Braess and P. Peisker. On the numerical solution of the biharmonic equation and the role of squaring matrices for preconditioning (submitted).Google Scholar
  5. 5.
    G. Brand. Multigrid methods in finite element analysis of plane elastic structures (in prep., augmented by private communications).Google Scholar
  6. 6.
    G. Duvaut and J.L. Lions. Inequalities in Mechanics and Physics. Springer, Berlin-Heidelberg-New York 1976CrossRefzbMATHGoogle Scholar
  7. 7.
    I. Gustafsson. A preconditioned iterative method for the solution of the biharmonic problem. IMA J.Numer.Anal. 4, 55–67 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    W. Hackbusch. Multi-Grid Methods and Applications. Springer, Berlin-Heidelberg-New York-Tokyo 1985CrossRefzbMATHGoogle Scholar
  9. 9.
    R. Kettler. Analysis and comparison of relaxation schemes in robust multigrid and preconditioned conjugate gradient methods. In "Multigrid Methods" (W. Hackbusch and U. Trottenberg, eds.) Springer, Berlin-Heidelberg-New York 1982Google Scholar
  10. 10.
    H.R. Schwarz. Methode der Finiten Elemente. Teubner 1984Google Scholar
  11. 11.
    J. Stoer. Solution of large linear systems of equations by conjugate gradient type methods. In "Mathematical Programming: The State of the Art", pp.540–565. Springer, Berlin-New York 1983CrossRefGoogle Scholar
  12. 12.
    R. Stüben and U. Trottenberg. Multigrid methods: Fundamental algorithms, model problem analysis and applications. In "Multigrid Methods" (W. Hackbusch and U. Trottenberg, eds.) Springer, Berlin-Heidelberg-New York 1982Google Scholar
  13. 13.
    R. Verfürth. A combined conjugate gradient-multigrid algorithm for the numerical solution of the Stokes problem. IMA J.Numer. Anal. 4, 441–455 (1984)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • Dietrich Braess
    • 1
  1. 1.Fakultät für MathematikRuhr-UniversitätBochumGermany

Personalised recommendations