Advertisement

A multigrid solver for a stabilized finite element discretization of the Stokes problem

  • E. M. Abdalass
  • J. F. Maitre
  • F. Musy
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1228)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    ARNOLD, D.N., F. BREZZI and M. FORTIN, A stable finite element for the Stokes equations, Preprint, University of Pavia, 1983.Google Scholar
  2. [2]
    BANK, R., PLTMG Users'Guide. Technical Report, Department of Mathematics, University of California, San Diego, 1982.Google Scholar
  3. [3]
    BRANDT, A., Multigrid Techniques: 1984 Guide with Applications to Fluid Dynamics. G.M.D.-Studien Nr. 85, St. Augustin, 1984.Google Scholar
  4. [4]
    BREZZI, F. and J. PITKÄRANTA, On the stabilization of finite element approximations of the Stokes equations. In: W. HACKBUSCH (ed.), Efficient Solutions of Elliptic Systems, Proceedings, Kiel, Jan. 1984. Notes on Numerical Fluid Mechanics, vol. 10, pp. 11–19, Vieweg, 1984.Google Scholar
  5. [5]
    CROUZEIX, M. and P.A. RAVIART, Conforming and non-conforming finite element methods for solving the stationary Stokes equations. R.A.I.R.O. Anal. Numer. 7 R-3, pp. 33–76, 1977.MathSciNetzbMATHGoogle Scholar
  6. [6]
    HACKBUSCH, W., Analysis and multigrid solutions of mixed finite element and mixed finite difference equations. Preprint, Institut für Angemandte Mathematik, Ruhr-Universität Bachum, 1980.Google Scholar
  7. [7]
    MAITRE, J.F. and F. MUSY, Multigrid Methods: convergence theory in a variational framework. S.I.A.M. Journal on Numerical Analysis, vol. 21, no 4, pp. 657–671, 1984.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    MAITRE, J.F., F. MUSY and P. NIGON, A fast solver for the Stokes equations using multigrid with a Uzawa smoother. In: D. BRAESS, W. HACKBUSCH, U. TROTTENBERG (eds.), Advances in Multi-Grid Methods, Proceedings, Oberwolfach, Dec. 1984. Notes on Numerical Fluid Mechanics, vol. 11, pp. 77–83, Vieweg, 1985.Google Scholar
  9. [9]
    PITKÄRANTA, J. and J. SAARINEN, A multigrid version of a simple finite element method for the Stokes problem. Report-MAT-A217, Helsinki University of Technology, 1984.Google Scholar
  10. [10]
    STÜBEN, K. and U. TROTTENBERG, Multigrid Methods: Fundamental Algorithms, Model Problem Analysis and Applications. In: W. HACKBUSCH and U. TROTTENBERG (eds.), Multigrid Methods, Proceedings, Köln-Porz, Nov. 1981. Lecture Notes in Math. 960, pp. 1–176, Springer-Verlag, 1982.Google Scholar
  11. [11]
    VERFÜRTH, R., A multilevel algorithm for mixed problems. S.I.A.M. Journal on Numerical Analysis, vol. 21, no 2, pp. 264–271, 1984.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • E. M. Abdalass
    • 1
  • J. F. Maitre
    • 1
  • F. Musy
    • 1
  1. 1.Département de Mathématiques-Informatique-SystèmesEcullyFrance

Personalised recommendations