A multigrid solver for a stabilized finite element discretization of the Stokes problem

  • E. M. Abdalass
  • J. F. Maitre
  • F. Musy
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1228)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    ARNOLD, D.N., F. BREZZI and M. FORTIN, A stable finite element for the Stokes equations, Preprint, University of Pavia, 1983.Google Scholar
  2. [2]
    BANK, R., PLTMG Users'Guide. Technical Report, Department of Mathematics, University of California, San Diego, 1982.Google Scholar
  3. [3]
    BRANDT, A., Multigrid Techniques: 1984 Guide with Applications to Fluid Dynamics. G.M.D.-Studien Nr. 85, St. Augustin, 1984.Google Scholar
  4. [4]
    BREZZI, F. and J. PITKÄRANTA, On the stabilization of finite element approximations of the Stokes equations. In: W. HACKBUSCH (ed.), Efficient Solutions of Elliptic Systems, Proceedings, Kiel, Jan. 1984. Notes on Numerical Fluid Mechanics, vol. 10, pp. 11–19, Vieweg, 1984.Google Scholar
  5. [5]
    CROUZEIX, M. and P.A. RAVIART, Conforming and non-conforming finite element methods for solving the stationary Stokes equations. R.A.I.R.O. Anal. Numer. 7 R-3, pp. 33–76, 1977.MathSciNetzbMATHGoogle Scholar
  6. [6]
    HACKBUSCH, W., Analysis and multigrid solutions of mixed finite element and mixed finite difference equations. Preprint, Institut für Angemandte Mathematik, Ruhr-Universität Bachum, 1980.Google Scholar
  7. [7]
    MAITRE, J.F. and F. MUSY, Multigrid Methods: convergence theory in a variational framework. S.I.A.M. Journal on Numerical Analysis, vol. 21, no 4, pp. 657–671, 1984.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    MAITRE, J.F., F. MUSY and P. NIGON, A fast solver for the Stokes equations using multigrid with a Uzawa smoother. In: D. BRAESS, W. HACKBUSCH, U. TROTTENBERG (eds.), Advances in Multi-Grid Methods, Proceedings, Oberwolfach, Dec. 1984. Notes on Numerical Fluid Mechanics, vol. 11, pp. 77–83, Vieweg, 1985.Google Scholar
  9. [9]
    PITKÄRANTA, J. and J. SAARINEN, A multigrid version of a simple finite element method for the Stokes problem. Report-MAT-A217, Helsinki University of Technology, 1984.Google Scholar
  10. [10]
    STÜBEN, K. and U. TROTTENBERG, Multigrid Methods: Fundamental Algorithms, Model Problem Analysis and Applications. In: W. HACKBUSCH and U. TROTTENBERG (eds.), Multigrid Methods, Proceedings, Köln-Porz, Nov. 1981. Lecture Notes in Math. 960, pp. 1–176, Springer-Verlag, 1982.Google Scholar
  11. [11]
    VERFÜRTH, R., A multilevel algorithm for mixed problems. S.I.A.M. Journal on Numerical Analysis, vol. 21, no 2, pp. 264–271, 1984.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • E. M. Abdalass
    • 1
  • J. F. Maitre
    • 1
  • F. Musy
    • 1
  1. 1.Département de Mathématiques-Informatique-SystèmesEcullyFrance

Personalised recommendations